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Chapter 1

Introduction

If you’re reading this book then I presume that you’re curious about infinity, set
theory, and its philosophy. Growing up I’d always been interested in philoso-
phy. Mathematics however, I found to be a necessary but tiresome part of the
curriculum, especially through my teenage years. I had great teachers, but the
focus on exam preparation that inevitably took up the bulk of our time was just
plain boring—solving dreary computational problems using known algorith-
mic methods (a task that I’m not especially good at to this day). This didn’t fit
so well with what my mother Jeanne (a mathematics teacher) had always told
me—that at a certain point mathematical study can feel like “doors opening left
and right”. It was at university that I saw Cantor’s Theorem and Gödel’s The-
orems for the first time. Suddenly I understood what my mum had meant—
mathematics was an area where new ideas and methods could result in a com-
plete shift in one’s perspective on theworld, and your ability to solve problems is
only bounded by your creativity and the constraints of logical space. The doors
were verymuch open, and I became increasingly interested in notions of infinity
in mathematics. To understand infinity, it’s very natural to start by considering
our best mathematical theories of it. Set theory, as a theory of infinite collec-
tions and what we can do with them, was the obvious choice. Understandably,
philosophers have showed a lot of interest in set theory since its beginnings in
the late 19th and early 20th century. There was already plenty of philosophical
material to get my teeth into, and I tucked in with gusto.

What I discovered, however, was that the buffet was far richer than I’d an-
ticipated. In particular, several philosophical and mathematical advances have
been made in the philosophy of set theory since the early 2000s. Both math-
ematicians and philosophers have closely examined ideas concerning whether
there is an all-encompassing domain for set theory, and how the tools of contem-
porary set-theoretic practice might bear on philosophy. This has tied the study
of the philosophy of set theory very closely to issues in metaphysics, including
the nature of possibility and absolute generality. However, I think it’s fair to say
that these developments (with some notable exceptions) have been passed over
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formainstreamphilosophical consideration. Whilst this is understandable—the
mathematical barrier to entry is high and our time is finite—the philosophical
issues themselves are (in my opinion) understandable to anyone with some in-
troductory logic courses under their belt.

Many philosophers are aware of the paradoxes of set theory (e.g. Russell’s
paradox). For many people, these were solved by the iterative conception of set
which holds that sets are formed in stages by collecting sets available at previ-
ous stages. This book will examine possibilities for articulating this solution. In
particular:

Main Aim. I will argue that there are different kinds of iterative concep-
tion, and it’s open which of them (if any) is the best.

Along the way, I hope to make some of the underlying mathematical and
philosophical ideas behind tricky bits of the philosophy of set theory clear for
philosophersmorewidely, andmake their relationship to other questions in phi-
losophy perspicuous.

Here’s the plan. Chapter 2 will lay down some reasons as to why we should
be interested in set theory as philosophers and mathematicians. This chapter
serves as a motivation for the reader less familiar with set theory to get excited,
however it also serves a dual purpose—we’ll see some desiderata that will be
employed later in the book when we come to assess set-theoretic concepts/con-
ceptions.

Chapters 3 and 4 set up a way of thinking of set-theoretic progress as trad-
ing off inconsistent principles. Chapter 3 will go over the naive conception of
set and the paradoxes that brought it down. We’ll also provide a diagnosis of the
problem as involving a conflict of two inconsistent principles. This material is
well-worn, but I’ll explain a twist on the classic paradoxes that has been exam-
ined by philosophers recently (namely that we can think of these paradoxes as
paradoxes about the existence of functions) which will help integrate this mate-
rial with what comes later. Chapter 4 will present the emergence of the combi-
natorial conception and logical conception of set, and give the iterative conception
as a further sharpening of the combinatorial conception. We’ll also explain the
standard ‘strong’ version of the iterative conception, and how it can be given a
modal stage theory.

Chapter 5will then explain somemathematical ideas that have informed the
development of contemporary set theoryunder the iterative conception, namely
forcing (a way of adding subsets of sets to models). I’ll do my best to make these
mathematically tricky ideas palatable to philosophers.

Chapter 6 will explain a paradox given forcing for a certain conception of
set, and explain how it is linked to the incompatibility of inconsistent principles
(much like the naive conception). In particularwe’ll see how thePowersetAxiom
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is incompatiblewith the idea that there should be saturation under forcing in the
universe.

Chapters 7 and 8 will identify a split in how we might move forward. Chap-
ter 7 will explain how there is a genuine choice between Powerset and forc-
ing saturation, and will show how forcing saturation can be viewed as arising
from kinds of iterative process. Chapter 8 will explain how mathematics is in-
terpreted within each conception, and will contrast each in the light of the the-
oretical virtues discussed in Chapter 2.

Finally, Chapter 9 will provide a concluding summary and identify some
further work that is needed in order to obtain greater clarity on these issues. In
particular, I’ll explain some salient objections that need addressing in order to
move forward. I hope that the reader comes awaywith a sense of how set theory
is philosophically interesting and the vastness of conceptual space.

Before we get going, however, a few remarks are in order. First, whilst I
hope that this book is of pedagogical value and can help people new to the phi-
losophy of set theory gain an understanding of some difficult mathematics, this
is not a textbook. My approach is one of conveying underlying ideas, rather than
giving everything in full rigorous detail. Where sensible I’ve tried to give formal
definitions and references for the interested reader in footnotes rather than the
body of the text.

Relatedly, the pacing of this book will feel slightly odd. There is a tension in
exposition in that I both want to get the newcomer interested but also accomplish
a significant research-oriented goal. I therefore run the risk of boring the reader
who has been studying these issues for years whilst outstripping what can be
expected of an early student (however talented). I’ve tried to present the known
material in such a way that it makes recent novel twists on old material clear,
and to keep the harder material as accessible as possible. However this book
is hard if you aren’t familiar with the relevant bits of mathematical logic. My
aim is to make things accessible and not, per impossibile, easy. To combat this
problem, the book runs along two tracks. The ‘standard’ track is intended for
those who do not necessarily have years of philosophy of set theory under their
belt. The ‘expert’ track is for thosewho already know a good bit of philosophy of
set theory. I denote sections/paragraphs/footnotes that are on the expert track
with a ‘blackbelt’ emoji (and often inside a box). I encourage everyone to read
all the book, after all it’s helpful to peek behind the curtain and see some of the
complicated workings of the machine. But readers should not feel disheartened
if -parts are tricky to follow—those are especially difficult and one shouldn’t
expect to get everything first try.

I’ll use the following conventions. Bits of language (e.g. syntax/utterances)
will be enclosedwithin double quotationmarks. So “Toffee is a clever cat” can be
a sentence or an utterance, “cat” is a word or term in language, and “Toffee” is a
name (in this context), whereas Toffee is a (particular) cat who is also clever. Sin-
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gle quotation marks will be used as ‘scare quotes’ i.e. cases where the enquoted
phrase is not to be taken literally (though it may be illustrative). In cases where
such usage occurs in a formal context, single quotes often denote an abbrevia-
tion for a formal claim (e.g. PA ` ‘There are infinitely many prime numbers’,
even though “There are infinitely many prime numbers” is a sentence of English,
not Peano Arithmetic). Italics are reserved for emphasis, or where they occur
in the scope of a definition, the definiendum. I allow definitions to be informal
and philosophical as well as formal, but I will clearly separate the informal and
formal definitions. With these conventions in hand, let’s get ready to set out!
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Chapter 2

Why set theory?

Before we start getting into the iterative woods, I want to give some motivation
for studying set theory and its philosophy.

Question. Why do this, given that there’s so many good introductions into
these topics?

Answer. As well as providing a survey of some of the literature, this chapter
will lay down some theoretical virtues that we might think theories/conceptions
of set can have. These virtues will be important later when we come to assessing
our options.

What are sets? Here’s a rough-and-ready definition:1

Definition 1. (Informal) A set is a kind of collection that is:

(i) Extensional: Sets with differentmembers are non-identical, and sets with
the same members are identical.

(ii) Objectual: Sets are objects over and above their elements.

So, for example, I can consider the set of books currently on my table. This
is an object, in addition to the books themselves. If I take a book offmy table, the
term “the set of books on my table” now denotes a different set, since this new
set of books has different members.

Just given this bare bones story, it’s natural now to ask: Why be interested
in set theory at all? It’s useful first to consider a bad answer (but one that helps
us see the role of set theory more clearly):

1( ) It’s plausible that nowadays we think that sets are combinatorial too (in the sense of
being extensionally equivalent to pluralities of objects, irrespective of whether we can provide a
circumscribing definition). Later we’ll set up the difference between the logical conception and
combinatorial conception of set, and so I don’t want to commit to this just yet.
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Theory of Collections. Set theory provides our best theory of collections.

This is perhaps encapsulated by George Boolos’ claim that:

I thought that set theory was supposed to be a theory about all, “ab-
solutely” all, the collections that there were and that “set” was syn-
onymous with “collection” [Boolos, 1998, p. 35]2

The idea that the interest of set theory derives from “set” being synonymous
with “collection” or providing our best theory of collections is open to at least
two powerful criticisms:

First, there’s lots of different ways we talk about collections. To take two
simple kinds: (1.) Collection-like talk needn’t be objectual. As the vast liter-
ature on plural logic indicates3, we can talk about and quantify over objects in
the plural without thereby committing to a set of them. So, instead of talking
about the set of books on my table, I could just have talked about the books on
my table in the plural. (2.) Collection-like talk needn’t be extensional. Instead,
it can be taken intensionally, where identity is not taken to be governed by an
extensionality criterion. Presumably there’s a sense in which I don’t destroy my
beer coaster collection just by giving one of the (many) beer coasters to a friend.
My collection of beer coasters is just the kind of thing that can survive a loss (or
better yet, gain) of some members.

Second, even if set theory did provide our best theory of collections, there’s
much more to the story. Collections of beer coasters are a perfectly good sub-
ject matter for philosophical study, but this observation fails to explain why set
theory is often regarded as central to many areas (and especially mathematics).

Here’s what I take to be the core point: Objectual and extensional collections,
when augmented with the ‘right’ axioms, are powerful devices of representation. And
the ability to represent means that all sorts of problems, both philosophical and
mathematical, can be encoded within set theory.

Let’s look at this idea in a little more detail. This representational power
presents two interlinked aspects of set theory:

Foundation for Mathematics. Set theory provides a ‘foundation’ for mathe-
matics (and hence mathematical tools in philosophy).

Philosophical Repository. Set theory examines many philosophically inter-
esting subjects (e.g. paradoxes, infinity).

2( ) Boolos here is discussing the contrast between sets and proper classes, so perhaps the
quotation is intended for a slightly different context. Whatever the weather, the idea that set
theory just provides our best theory of collections is enough to get the ball rolling.

3See [Florio and Linnebo, 2021] for a book-length treatment.
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This division is far from exclusive. Certainly there are cases where we might
think that set theory and philosophy are inextricably intertwined.4 Indeed, this
book emphasises the fact that mathematics and philosophy can become fruit-
fully intermixed, and I do not think it is either necessary or desirable to keep
these considerations separate. Nor do I think that every bit of set theory will be
entangled with philosophy, and there are set theorists who study solely mathe-
matical questions. Still, the distinction serves as a rough categorisation for dif-
ferent facets of set theory.

At this stage, we’ll keep things relatively informal, but a little precisionwill be
helpful. One set theory that’s proved to be of central interest isZermelo-Fraenkel
set theory with the Axiom of Choice (ZFC), whichwe’ll examinemore closely later.
For now let’s just content ourselves with the following rough characterisation:
ZFC tells you that there’s lots of sets (both finite and infinite) and let’s you do
many of the usual set-theoretic operations you want on those sets (e.g. take the
union of two sets).

Recently, PenelopeMaddyhas isolated somemathematical goalsof set-theoretic
foundations built on ZFC.5 I’ll provide some examination of Maddy’s ideas, and
I’ll suggest some modifications and additions of my own.6 These goals serve a
dual purpose. On the one hand, theymotivate the consideration of set theory for
the interested reader. On the other, we will use them later to evaluate particular
conceptions of set.

Earlier I mentioned that set theory is a powerful device of representation.
Many of the desiderata we’ll consider are linked to this idea. For instance:

Observation. We can encode/represent all mathematical objects using sets.7

What do I mean by ‘encode/represent’ here? Let’s take a simple example
from high-school mathematics. We want to consider some geometric object in
two-dimensional (Euclidean) space, let’s say a straight line. By picking an origin
and imposing a coordinate system, we can represent this straight line by some
function f(x) = bx+c, and think of the straight line as composed of its graph of
ordered pairs 〈x, bx+ c〉. This can help us when, for example, trying to compute
the lengths of line segments (e.g. by using the Pythagorean theorem). But the
ordered pairs aren’t (intuitively speaking) the same as the line, they just encode it.

4See, for example [Rittberg, 2020] who argues that set-theoretic mathematical practice can
be metaphysically laden.

5See [Maddy, 2017] and [Maddy, 2019].
6For clarity’s sake, Generous Arena, Shared Standard, Metamathematical Corral, and

Risk Assessment are all explicitly identified by Maddy, and Theory of Collections, Foun-
dation for Mathematics, Philosophical Repository, Theory of Infinity, Independence,
Limits of Thought, and Testing Ground for Paradox are my own additions (though many
are implicit in much of the literature and Maddy’s work).

7See [Posy, 2020], Ch. 2, for a very concise survey of the classical situation (Posy sets up
the classical mathematician as a foil for intuitionism), as well as many set theory textbooks (e.g.
[Enderton, 1977]).
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So with sets, but generalised to any mathematical object you’d care to con-
sider. Zero can be encoded by the empty set, natural numbers by the finite von
Neumann ordinals8, rationals as pairs of natural numbers, reals as Dedekind-
cuts of rationals,9, orderedpairs asKuratowski-orderedpairs10, and functions/re-
lations by sets of orderedpairs (i.e. the functionf is encodedby{〈x, y〉|f(x) = y}).
Of course there’s lots of choices, and this is just an illustration of one way you
might do things.11

Using similar tactics, any mathematical object we have come up with can
be encoded by sets (putting aside some controversial cases12). This has some
important consequences. First, set theory provides a:

Generous Arena. Find representatives for our usual mathematical structures
(e.g. N, R) using our theory of sets.

I think it is worth pausing for a moment to reflect on just how remarkable
Generous Arena is. Just using the membership relation and suitable axioms,
we can find a representative for almost any object you’d care to discuss—all the
vertiginous diversity we see in mathematics can be captured by that one little
relation of membership. Because we can encode mathematical objects as sets,
we have away of relating them to each otherwithin a single domain. ThisMaddy
argues, gives us:

Shared Standard. Provide a standard of correctness for proof inmathematics.

The thought here is that because we have Generous Arena and can view
mathematical objects as encoded/represented by sets, a proof about amathemat-
ical object can be regarded as correct if it could be (in principle) translated into
a proof in set theory about properties of the relevant mathematical code(s). Of
course, “in principle” is important here—outside of set-theoretic mathematics it

8These can be defined inductively with 0 =df ∅ and n+ 1 =df n ∪ {n}.
9A Dedekind cut is a partition of the rational numbers into two non-empty sets A and B,

whereA is closed downwards and does not contain a greatest element.
10The Kuratowski ordered pair is given by 〈a, b〉 =df {{a}, {a, b}}.
11See [Barton et al., 2022] for some of the formal details and further citations.
12( ) For example, one controversial objection (e.g. [Mac Lane, 1986], [Muller, 2001]) to set

theory goes something like this: “Everything in set theory has to be encoded by a set, and we
know that some categories like the category of all sets are too big to be encoded by sets. So set
theory cannot provide a foundation for category theory.” I do not find this objection convincing
for the following two reasons. (1.) set theorists certainly seem to talk about proper-class-sized
objects—the study of proper classes is in my (controversial) opinion a perfectly legitimate part
of set theory, and (2.) I don’t think that category-theoretic study of the sets is really directed at
the study of all the sets, but rather the study of the schematic first-order properties that all the
sets happen to satisfy. A full defence of this idea will have to be left for a different day, but amore
detailed explanation of this point can be found in [Barton and Friedman, 2019] (esp. §10.3).
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is very clunky to work with these codes, and we shouldn’t expect mathemati-
cians to actually go about their daily lives solely using the language of set theory.
The relevant language of the discipline in question is probablymore flexible than
working with just membership. (A desire for a foundation that “will capture the
fundamental character ofmathematics as it’s actually done, thatwill guidemath-
ematicians toward the truly important concepts and structures, without getting
bogged down in irrelevant details”Maddy termsEssentialGuidance, and since
all set theories we’ll consider here perform pretty badly in this respect, we’ll set
it to one side.)13

The ability to manipulate large infinite collections in ZFC-based set theory
yields the following:

Theory of Infinity. Set theory provides our best theory of infinite numbers.

Theory of Infinitywill be important later and so I’ve explicitly identified it
as a theoretical virtue in contrast to some of the literature that leaves it implicit
(it does not occur, for example, amongst the virtues identified by [Maddy, 2017]
and [Maddy, 2019]). To see its significance, we start by examining the two main
kinds of infinite number in set theory, namely ordinal and cardinal numbers. An
ordinal number can be thought of as an answer to the question of how long an
infinite ordering is. Call a set x (under a linear relation R) well-ordered by R iff
every subset of x has anR-least element. If x is well-ordered byR, then there’s
no way of descending infinitely in x alongR. This helps us think of performing
actions or operations into the infinite along a suitable infinite relations. Within
ZFC one can represent and develop an arithmetic for these orders, defining no-
tions of ordinal addition, multiplication, and exponentiation.14 This provides us
with ways of generalising normally finite operations (e.g. computation) into the
infinite. 15

Cardinal numbers, by contrast, can be thought of as answers to the question
of how many objects there are in a set. In particular, we say that two sets X
and Y have the same cardinality iff there is a bijection between them, where a
bijection f : X �→ Y is a function that ‘pairs off’ the members of X and Y ,
i.e. f takes no two elements of X to the same element of Y (f is injective) and
every element of Y is hit by f applied to some element ofX (f is surjective). By
representing cardinals using particular kinds of sets, ZFC provides a theory in
which the cardinal sizes of any sets can be compared and natural operations like

13See [Maddy, 2017, p. 305].
14There’s lots of ways to do this, but one popular way is to use von Neumann ordinals, where

we let 0 = ∅, α+ 1 = α ∪ {α}, and limit λ =
⋃

β<λ β. Addition is represented by the ordered
disjoint union, multiplication by the lexicographical ordering on the product, and exponentiation
by iterated multiplication.

15( ) For example, we can consider infinite time Turing machines. See
[Hamkins and Lewis, 2000].
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multiplication, addition, and exponentiation generalised and computed.16 The
success of ZFC is striking, it seemingly gives finite beings (e.g. us) the ability to
reason about large infinite objects. Many surprising facts can be thereby shown.
For example, we can prove that:

Theorem 2. There are as many natural numbers as there are squares of natu-
ral numbers (in particular f(x) = x2 is just such a bijection from the natural
numbers to the squares of naturals).

This is somewhat surprising since the squares of n and n + 1 get more and
more spread out as n gets larger. Indeed, similar results were even regarded as
kinds of ‘paradox’ by Thābit ibn Qurra and Galileo. We can even show:

Theorem3. Theset of all rational numbers—thenumbers expressible by fractions—
is the same size as the set of all natural numbers.17

This is so even though there are infinitely many rational numbers between
any two natural numbers. We can also show:

Theorem 4. There are as many real numbers between 0 and 1 (or any two real
numbers for that matter) as there are in the real line, or in any n-dimensional
plane based on the real line (i.e. Rn).18

Despite these surprising results on sameness of size, we also discovered that
infinity comes in different cardinal sizes:

Theorem 5. (Cantor’s Theorem for the reals) The cardinality of real numbers is
greater in size than the cardinality of the natural numbers, in the sense that (i)
there is no bijection between the natural numbers and the real numbers, and (ii)
there is an injection from the natural numbers to the real numbers.

This phenomenon appears to be more general than merely comparing the
natural numbers and real numbers. We in fact discovered that:

Theorem 6. (Cantor’s Theorem) LetP(x) denote the power set of x, the set of all
subsets of x (that such a set always exists is one of the central axioms of ZFC).
Then the cardinality of P(x) is greater than that of x.19

16Again, there’s a variety of ways one might proceed, but here’s a typical one. The cardinality
of X can be represented as the least von Neumann ordinal bijective with X . Cardinal addition
can be computed as the cardinality of the disjoint union, multiplication as the cardinality of the
product, and exponentiationXY as the cardinality of the set of all functions from Y toX .

17See, for example, Chapter 2 of [Giaquinto, 2002] for an explanation of this result.
18Again, see Chapter 2 of [Giaquinto, 2002].
19We’ll discuss a proof of Cantor’s Theorem later, in particular as it relates to the paradoxes

in Chapter 3.
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Again, Cantor’s Theorem is striking. It seems to imply, on the basis of natu-
ral principles about sets, that if there’s one infinite set then there’s a never ending
hierarchy of infinite sets, since the power set of any set x is always bigger than x.
Moreover, it produces much of the interest of cardinal arithmetic—whilst ad-
dition and multiplication are trivial for infinite cardinal numbers (one can show
that both addition and multiplication just result in getting the larger of the two
back) cardinal exponentiation is not—one can show that 2κ > κ for any cardinal
κ.20

The ability to work with infinity plays out in various areas of philosophy,
including areas outside the philosophy of mathematics.21 Indeed, these argu-
ments are often regarded as a refutation of the time-honoured position in phi-
losophy and mathematics that infinity is completely beyond understanding and
intractable within mathematics.22

However, this success must be tempered by the following phenomenon that
emerged in the 20th century:

Independence. There are sentences of set theory that can neither be proved
nor refuted using our ‘canonical’ theory of sets ZFC, assuming that ZFC is con-
sistent. Nor can any ‘reasonable’ expansion of ZFC settle all questions formal-
isable in the language of set theory.23

Beforewe discuss this further let’s remark that themere fact of independence
20In particular, you can think of 2κ as the size of P(κ), since any member of P(κ) can be

correlated with a unique function from κ to 2 = {0, 1} via characteristic functions (where for
X ⊆ κ, f(α) = 1 iff α ∈ X ).

21( ) Here’s an example from infinite ethics showing how infinite assumptions can play out
with utility calculations (the example is due to [Cain, 1995]). Supposewe have people arranged at
all coordinates of the real plane indexed by integers (so there’s a single person at every (m,n) for
integersm andn). A circle slowly grows from the origin. In one scenario (the circle of happiness),
everyone starts at utility−1 and moves to utility+1000 (or any large finite amount) when they
fall inside the perimeter of the circle (and remains at this value forevermore). For the circle of neg-
ativity, each agent starts at+1 and goes to−1000when they get caught by the circle. With simple
cardinality arguments one can argue that the sumof the utility for the expanding sphere of nega-
tivity is positively infinite, whereas the expanding sphere of happiness is negatively infinite (one
needs to define these terms, but the rough idea is that there’s always boundedly many happy/sad
people in the circle of happiness/negativity, whereas infinitely many people of the opposite dis-
position). Cain argues that we should nonetheless prefer to be in the expanding happiness world
(since then we just have to wait long enough to be blissfully happy forevermore). Thanks to Joel
David Hamkins for communicating this example to me, see [Hamkins and Montero, 2000] for
some further discussion.

22See, for example, the paradoxes of the infinite given in the Introduction to [Moore, 1990].
The place of Cantor, his results, and other scholars in arriving at a final acceptance of infinity is
actually somewhat more subtle than is often acknowledged (see [Ferreirós, 2007], especially the
Introduction). ( ) In particular, it is somewhat unclear whether our notion of cardinality had
to be the Cantorian one, or if in different circumstances we might have ended up with a version
of cardinality that respects the idea that a proper part should always be smaller than the whole.

23( ) Here ‘reasonable’ means recursively enumerable and consistent.
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is philosophically important. It shows that there will be limits to what our for-
mal theories capture. There are at least two kinds of independence that will be
relevant for us. To set things up, let’s start with the following:

Definition 7. We let the cardinal numbers be indexed by ordinals using a func-
tion we’ll call the ‘aleph’ function (or ℵ). ℵ0 is the smallest cardinal number
(which happens to be the cardinality of the natural numbers). ℵ1 is the next
smallest, and more generally ℵα is the αth cardinal number. We’ll denote the
ordinal corresponding to ℵα by ωα (we’ll often also let ω0 denoted by “ω”).

A routine argument shows that 2ℵ0 > ℵ0 (by Cantor’s Theorem). But is
there anything in between? That is, does 2ℵ0 = ℵ1? Or are there cardinalities in
between, and in fact 2ℵ0 > ℵ1?

Definition 8. We will use the following for discussing the spread of cardinali-
ties:

• The Continuum Hypothesis (or CH) is the statement that 2ℵ0 = ℵ1.

• The Generalised Continuum Hypothesis (or GCH) is the statement that ‘For
every ordinal α, 2ℵα = ℵα+1’ (i.e. every jump in cardinality obtained by
applying the powerset operation to an infinite set just pushes you up one
cardinal number).

• The continuum function is defined by f(ℵα) = 2ℵα (i.e. the function that
takes an infinite cardinal to the cardinality of its powerset).

As it turns out, CH, ¬CH, GCH, and ¬GCH are all consistent with ZFC (as-
suming ZFC itself is consistent). We’ll explain how this works later (Chapter
5).

To discuss the other kind of independence, we first need a brief foray into
consistency strengths. Within arithmetic, and hence within ZFC, one can (com-
putably) encode syntactic notions like sentence, formula, proof, and consistency.
This allows you to formulate a sentence within ZFC expressing the idea that
ZFC is itself consistent (more precisely, you can formalise within ZFC the sen-
tence that there’s no proof of a contradiction derivable from the axioms of ZFC).
Call this sentence Con(ZFC). But now we can point to:

Theorem 9. (Gödel’s Second Incompleteness Theorem) Assuming that ZFC is con-
sistent24, then Con(ZFC) is not provable within ZFC, and nor is ¬Con(ZFC).
Moreover, this theorem holds for any (suitably nice25) theory that can represent
arithmetic.

24( ) Strictly speaking we need ω-consistency, and this is Rosser’s strengthening, but we’ll
put this to one side for the sake of clarity.

25( ) i.e. recursively enumerable and consistent.
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Within set theory we can study a wide variety of sentences that have differ-
ent consistency strengths—one can often prove one extension of ZFC consis-
tent from another. As it turns out, CH and ¬CH are not like this (ZFC, ZFC +
CH, and ZFC + ¬CH are all equiconsistent in that one can prove each consistent
from the other). Obviously adding Con(ZFC) results in a consistency strength
increase. There are other principles—so called large cardinal axioms—that are
important here. These serve as the natural indices for consistency strength. They
postulate the existence of sets with a lot of closure properties and if they exist (or
are consistent) we can prove that many theories are consistent by finding models
of the relevant kind. Set theory has in fact discovered a whole hierarchy of these
cardinals with stronger and stronger closure properties.

( ) Here’s an example:

Definition 10. A cardinal κ is strongly inaccessible (or just inaccessible) iff:

(i) κ is uncountable (i.e. it’s bigger than the cardinality of natural num-
bers).

(ii) Given any set x smaller than κ, the cardinality of P(x) is also smaller
than κ (in this case we call κ a strong limit cardinal).

(iii) Given any set x smaller than κ, and any function f : x→ κ, the range
of f is bounded by some γ < κ (here, we say that κ is regular).

It’s instructive to think about what such an axiom says. Such a κ seems
very big—clause (i) ensures it’s bigger than N, (ii) says that you can’t catch
it with something smaller by taking our favourite size-increasing operation
(powerset), and clause (iii) says that you can’t catch it by mapping a smaller
object into it using a function. One can show that an inaccessible cardinal
κ suffices to produce a model for ZFC (and much more), and so by Gödel’s
Second IncompletenessTheoremyou can’t produce an inaccessible cardinal
from ZFC alone. We can strengthen this axiom by postulating that there is
a cardinal κ that is (i) strongly inaccessible, and (ii) has κ-many strongly
inaccessibles beneath it. And these cardinals lie right at the bottom of the
large cardinal hierarchy.a

aSee, for example, the diagram on p. 472 of [Kanamori, 2009] for an idea of the extent
of the space.

Those are the two kinds of independence we’ll consider. One (the CH kind)
involves the exact value of cardinal sizes. The other (the large cardinal kind)
involves considering sets with ever greater and greater closure properties and
consistency strength. These aren’t the only kinds of independence (there are also
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strong axioms that don’t directly postulate the existence of large cardinals26) but
these are the ones we’ll focus on.

We should pause for a moment to reflect on what this independence tells
us about our ability to provide formalisations of theories of sets. Whilst ZFC
does give us the resources to prove a great many things about the infinite, it
does not yield information about the values of many cardinal computations nor
what kinds of set exist with certain closure properties. How we might respond
to this situation will be a central theme of this book, but it should be noted that
Independence is a reason for philosophers—i.e. not just mathematicians—to
be interested in set theory. Assessing the impact of independence is central for
understanding our place in the world and what we can (and maybe can’t) do. I
think it’s important therefore to isolate the following philosophical aspect of set
theory.

Limits of Formalisation. Set theory provides a natural place to examine the
limits of our formalisation, pushing the boundaries ofwhatmight be realistically
expected to be captured, and exploring where formalisations may finally give
out.

It’s a beguiling question to think what the implications of Limits of For-
malisationmight be. Does it imply that there are limits onwhat can be known?
Or that there is some kind of metaphysical indeterminacy in the world? These
are important questions for philosophers, and show that Independence ismore
than a mere mathematical curio.

From the mathematical perspective, set theory is one of the main theories in
whichwe study Independence. It provides uswith flexible toolswithwhichwe
can study models of different theories, how they can be built from one another,
and hence how relative provability works (given the Completeness Theorem).
We can thus (with Maddy) identify:

Metamathematical Corral. Provide a theory in which metamathematical in-
vestigations of relative provability and consistency strengths can be easily con-
ducted.27

As philosophers, we should be keen to assess whether the theories we work
in are consistent. Metamathematical Corral combined with the fact (as we’ll

26( ) See, for example, so called ‘Axioms of Definable Determinacy’ [Koellner, 2014].
27( ) As experts will know there are other theories we might pick. One only really needs a

theory of syntax to study consistency (and weak theories of arithmetic suffice for such a theory).
Another salient field here is proof theory and the study of proof-theoretic ordinals. In a way, set
theory provides more than what is required for examining Metamathematical Corral. How-
ever, it is in the variety of models, and what one can build from them, where set theory really
shines. So it is perhaps better to say that set theory provides a piece of the puzzle for Meta-
mathematical Corral, rather than the whole picture. Thanks to Marcus Giaquinto and Daniel
Waxman for some further discussion here.
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see later) that set theory often comes with an attendant conception of what the
sets are like gives us:

Risk Assessment. Provide a degree of confidence in theories commensurate
with their consistency strength.

In particular, suppose that you come up with a wild new theory T (either
philosophical or mathematical). If I can use some set theory S to produce a
model of T, then I know that I can be at least as confident in the consistency
of T as I am in S.

Risk Assessment is especially important as many theories here are
inconsistent. As many philosophers know, early set theory was subject to para-
doxes (e.g. Russell’s Paradox). However set theory can also yield inconsistency
and paradox when combined with other philosophical principles, such as when
we layer mereology on top of the sets (e.g. [Uzquiano, 2006]). I also want to
point out (in line with Philosophical Repository) that an enormous variety of
set-theoretic ideas can be extended to inconsistency. In particularwhenwepush
ideas to their natural limit, they nearly always explode, Perhaps this constitutes
a kind of ‘paradox’ (maybe in a weak sense of the term). Some of these we’ll see
later, and some others I mention in a footnote for the reader who wants to look
further.28 One might think that this is a negative of the discipline—after all isn’t
inconsistency a (if not the) unforgivable sin? I disagree. Inconsistency can be
informative. Set theory gives us the tools to locate and diagnose these inconsis-
tencies, helping us to elucidate ourLimits of Formalisation and further giving
us a:

Testing Ground for Paradox. Set theory is very paradox prone, both in terms
of the principles that can be formulated within set theory and when combined
with certain philosophical ideas (e.g. absolute generality and mereology). In
this way, set theory provides a testing ground for seeing when and how ideas are
inconsistent.

So, there’s some interesting and nice features of set theory—not just a The-
ory of Collections, but a field that provides a Foundation for Mathemat-
ics and Philosophical Repository, in particular by providing a Generous
Arena, Shared Standard, Theory of Infinity, the example of Independence
and its use as a Testing Ground for Paradox, that help articulate the Limits

28( ) For example, the embedding template j : V → M for large cardinals explodes when
M = V . Forcing axioms can pop in various ways, either by admitting too many parameters,
allowing too many kinds of forcing, or not keeping a tight enough control on the sentences
allowed (see [Bagaria, 2005]). Standard reflection principles blow up at the level of third-order
reflection (see [Reinhardt, 1974] and [Koellner, 2009]) and modal reflection principles are pretty
flammable too (see [Roberts, 2019]).
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of Thought, give us a Metamathematical Corral, and Risk Assessment for
our theories. Before we move on, I want to identify one last important aspect
of set theory. Although many of these above constraints are simply reasons to
be interested in set theory, or were things that set theory happened to be use-
ful for, there is a sense in which set theory was designed to fit these purposes.
Risk Assessment, for example, can’t go ahead without set theorists deliberately
studying Independence andMetamathematical Corral. In this way, many of
the above—notably Generous Arena, Shared Standard, Theory of Infinity,
Metamathematical Corral, andRisk Assessment—are not just pleasant fea-
tures of set theory, but constraints/desiderata on its development too. Indeed
this is one of the central points of [Maddy, 2017] and [Maddy, 2019] (though she
leaves Theory of Infinity implicit). Thinking about these virtues in this dual
light will help to illuminate some of the issues later, and in particular whether
different conceptions/theories of sets are virtuous.
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Chapter 3

The naive conception of set and
the classic paradoxes

We’ve now got some desiderata for set theory on the table (Chapter 2). In this
chapter I want to explain one role for conceptions of set (namely to motivate
theories) and revisit some well-known material on the naive conception of set
and the ‘classic’ set-theoretic paradoxes. In doing so, I’ll present away of looking
at the paradoxes in terms of functions.

3.1 Conceptions of set and motivating theories
One way into the problem of the paradoxes is by considering the following:

Question. What do we want out of a conception of set?

At least in a mathematical context, what we want out of a conception is a
motivation for a theory, in particular an axiomatic theory.1 I’ll assume that the
reader has some understanding of formal axiomatic theories (later we’ll use a
little bit of first-order predicate logic, plural logic, modal logic, and set theory).
But where possible, I’ll provide informal paraphrases and reference away the
formal details. Further (as outlined in Chapter 2) we want a theory that can
do various foundational jobs for us. As good philosophers, it’s natural to want
conceptual underpinnings, and in particular a conception of set that delivers a
theory with the requisite features. This, at least in this book, is what I’ll take the
primary role of a conception to be—to provide a story of what the sets are like,
in order tomotivate a particular axiomatic theory of sets. Thismotivationmight
take the form of a formalisation (as we’ll see later with various stage theories), but
equally it could be something more informal.

1Here I am following some of the remarks in Ch. 1 of [Incurvati, 2020].
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3.2 The naive conception of set
Our first such conception will be the naive conception of set:

Definition 11. (Informal) The «naive conception» of set holds that sets are ex-
tensions of predicates, where the extension of a predicate is the collection of all
the things to which the predicate applies.2

We now want to consider what axioms the naive conception motivates. For
this, it will be helpful to set up an important language for us:

Definition 12. The language of set theory or L∈ is the first-order language with
one non-logical binary predicate “∈” and well-formed formulas formed in the
obvious way.

The naive conception clearly motivates adoption of the extensionality axiom
(which says that any two setswith the samemembers are equal) as it a conception
of set. Unfortunately, it also motivates:

Definition 13. The Naive Comprehension Schema asserts that for every one
place formula φ(x) in the language of set theory L∈, there is a set of all and
only the sets satisfying φ(x). Formally:

(∃y)(∀z)
(
z ∈ y ↔ φ(z)

)
Sadly, as we know, the Naive Comprehension Schema is inconsistent. Let’s

see how.

3.3 The paradoxes
Why go over the paradoxes, when excellent introductions are available in a wide
variety of texts?3 Aren’t I just rehashing old material? Here’s why we’ll look at
them:

(1.) Part of what we will see later is a ‘new’ kind of paradox (the Cohen-Scott
Paradox) and we’ll discuss how it’s similar to the classic paradoxes. So get-
ting them on the table early is a good idea.

(2.) There has been a shift of focus in the philosophical literature thatwill help us
to see the force of some problems later. Importantly, each of the paradoxes
can be linked to the (non-)existence of particular functions.

2This formulation is taken directly from [Incurvati, 2020, p. 24].
3See, for example, [Giaquinto, 2002], [Potter, 2004], and [Incurvati, 2020], for philosophical

introductions to the paradoxes, but almost any introductory text on set theory will cover them.
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In this book, I’ll only really consider Russell’s Paradox andCantor’s Paradox.
TheBurali-Forti Paradox is also interesting, however it is complicated by the fact
that one has to use set-theoretic codes for the ordinals (which otherwise could
be thought of as sui generis mathematical objects).4 Here they are:

Russell’s Paradox. Consider the condition x 6∈ x. By Naive Compre-
hension, this determines a set r. We ask: “Is r ∈ r?” If yes, then r 6∈ r
(since r is in the set of all x 6∈ x), contradiction. So instead assume r 6∈ r.
Then r satisfies the condition x 6∈ x, and so r ∈ r, contradiction. But then
r ∈ r ↔ r 6∈ r, a contradiction!

Cantor’s Paradox. Consider the condition x = x. Let {x|x = x} be
denoted by u (for “universal set”). Now consider P(u), i.e. the power set of
u. By Naive Comprehension, this is also a set. Now we show x = P(u)
by noting: (i) every element of P(u) is an element of u (trivially), and (ii) if
x ∈ u then x ∈ P(u) (since if x ∈ u, then ∀y ∈ x, y ∈ u (i.e. x ⊆ u) and
so x ∈ P(u)). So u = P(u).

Clearly then, there is a surjection f : u � P(u). Now consider the
set c = {x|x 6∈ f(x)}. Since f is surjective, there is a y ∈ u such that
f(y) = c. We now ask “Is y ∈ c?” If yes (i.e. y ∈ c), then y ∈ f(y), but
then y violates c’s defining condition, and so y 6∈ c, contradiction. So then
we assume y 6∈ c. But then y 6∈ f(y), and so ymeets c’s defining condition,
and y ∈ c, contradiction. So y ∈ c↔ y 6∈ c, a contradiction!

In fact, this proof can be transformed into a proof of Cantor’s Theorem,
just by replacing u by any old set x and performing a reductio on the claim
that there is a surjection f : x� P(x).

So far, sowell-known. Many introductory textbooks contain a presentation
of the paradoxes. However, something philosophers have paid more attention
to recently (though has been known for a long time) is that these paradoxes are
closely related:5

The Cantor-Russell Paradox. Define u and P(u) as in Can-
tor’s Paradox. Now consider the case where our surjection
f : u � P(u) is the identity map f(x) = x. Now the problematic
set c = {y|y 6∈ f(y)} = {y|y 6∈ y} = r. We’ll also refer to this a the
Cantor-Russell reasoning.

4For some discussion of these issues, see [Menzel, 1986], [Shapiro and Wright, 2006],
[Menzel, 2014], [Barton, 2021], and [Antos et al., 2021].

5See in particular, [Bell, 2014], [Whittle, 2015], [Meadows, 2015], [Whittle, 2018],
[Incurvati, 2020], [Scambler, 2021], and [Builes and Wilson, 2022].
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The important thing to note is that in this context (where f is the identity
map) the contradictory set rwe get out is the problematic set for both the Cantor
and Russell reasoning (since f is the identity map here, the set {y|y 6∈ f(y)} just
is {y|y 6∈ y}). So the two are not just superficially similar, but in many contexts
come down to definition of exactly the same set, and the core issue is whether
there’s a surjection f : u� P(u).

This observation works in the other direction too, where we assume that we
have an injection (i.e. one-to-one function) f : P(u) � u. Without loss of
generality, again this can be the identity map (since P(u) = u). Now we can
just consider the set {y|y 6∈ f−1(y)} (this is well defined since f is an injection).

Cantor’s Paradox and Russell’s Paradox might still not be exactly the same
(Cantor’s Paradox uses a bit more machinery than Russell’s, e.g. injections),
but there are clearly strong similarities between the two. I’ll remain neutral on
whether they are really ‘the same’ in any deep sense. Important for later will just
be:

(1.) We can view each paradox as starting by postulating the existence of a par-
ticular kind of function (either a surjection or an injection).

(2.) We can then identify sets x and y such that x ∈ y ↔ x 6∈ y (in the case of
Russell-Cantor, x and y are both r).6

3.4 Diagnosis
So, Naive Comprehension leads to contradiction. But why, and what options are
we left with? Many have been considered throughout the literature, surveys are
available in [Giaquinto, 2002], [Priest, 2002], and [Incurvati, 2020]. We’ll follow
Incurvati’s presentation here, since it will be instructive for making compar-
isons.

Let’s start by noting that theNaive Comprehension Schema encodes the fol-
lowing principle about the concept of set:

Universality. A concept/conception C is universal iff there exists a set of all
the things falling under C .7

Universality clearly follows from the naive conception, since the condition
x = x is a perfectly legitimate predicate of set theory and the naive conception
immediately licences the Naive Comprehension Schema. However, the follow-
ing is also a consequence:

6Of course, strictly speaking, anything follows from the contradiction in classical logic. The
point is just that a natural way of reasoning to the contradiction is to note the contradictory
membership conditions.

7This is adapted from [Incurvati, 2020, p. 27].
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Indefinite extensibility. A concept/conceptionC is indefinitely extensible iff
whenever we succeed in defining a set u of objects falling under C , there is an
operation which, given u, produces an object falling underC but not belonging
to u.8

Indefinite extensibility also follows from the Naive Comprehension
Schema/ This is because any time we have a set x, the Naive Comprehension
Schema gives us the juice required for the Cantor-Russell reasoning, and we can
then diagonalise to find a set not in x (e.g. one of the members of P(x)).9

Clearly, any conception that validates both Universality and Indefinite
Extensibility will be inconsistent, since there both must and can’t be a set of
all objects falling under the conception. So in order to proceed, a natural way to
go is to examine conceptions of set that drop one of these fundamental princi-
ples. And this is just what iterative set theories do.

8Again, adapted from [Incurvati, 2020, p. 27].
9This way of looking at things has clear affinities with [Priest, 2002]’s characterisation of the

Inclosure Schema and Domain Principle. Since we’re focussed on set theory here, and Priest’s
framework is more general, I’ve chosen to go the Incurvati-route.

24



Chapter 4

The weak and strong iterative
conceptions

We found ourselves in a tricky situation at the turn of the 19th century. The
burgeoning field of set theory was clearly useful, but the naive conception of set
was deeply flawed. In this chapter, I want to present the emergence of several
conceptions of set and the eventual rise of the strong iterative conception. We’ll
see that this idea can be formalisedmodally and there’s a close affinitywith ZFC. I
also want to indicate that there were other conceptions on the market. Analysis
of some of the history here in terms of conceptions helps to make sense of the
intellectual landscape various agents have inhabited. In particular we can better
see that there were possible places where our conception may have diverged.

4.1 The logical and combinatorial conceptions of
set

Earlier, we remarked thatwewant a conceptionof set tomotivate a useful theory
of sets. Given the background of classical logic, inconsistent theories of sets
are trivial (everything follows by the principle of explosion). In motivating a
good theory, it’s thus preferable if a conception can explain why the paradoxical
collections don’t exist. So a conception should:

(1.) Provide a reasonably ‘natural’ picture of what the sets are like.

(2.) Motivate a nice theory that is (hopefully) consistent.

In this latter regard, we also need to provide a:

(3.) Paradox Diagnosis. Explain why the paradoxical collections aren’t sets
and which conditions determine sets (and which don’t).1

1Thanks to Sam Roberts for some discussion of this issue.
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Let’s start to consider some candidates.

Definition 14. (Informal) The logical conception of set holds that sets are the
extensions of well-defined predicates.

The logical conception is often taken to contrast sharply with:

Definition 15. (Informal) The combinatorial conception of set holds that sets are
extensions of available pluralities.

We should note that whilst these conceptions are pretty rough and ready,
each admits of multiple different sharpenings (we’ll say a little more about this
in a second). In this sense, the conceptions are still defective in that they are
not sufficiently informative to motivate a good formal theory. However, each
indicates the shape of a response to the paradoxes. Many ways of making the
logical conception precise will hold that the predicate x = x is ‘well-defined’.2

Thus, under the logical conception, Universality is likely to be validated and
Indefinite Extensibility violated. Conversely, versions of the combinatorial
conception will make the notion of ‘availability’ precise in a variety of ways, and
doing so canmake it the case that not all sets are ‘available’. So it isUniversality
and not Indefinite Extensibility, that is likely to be the culprit.

This book does not aim to articulate fully all the different ways we might
sharpen the logical conception and combinatorial conception. The reader is di-
rected to [Incurvati, 2020] and the literature contained therein for a much more
thorough discussion. However, some things can be said about how one might
make each precise. First, we should note that this distinction need not be sharp
(a fact that we will return to in §9.5). Still, in order to improve the logical con-
ception, we need to say what “well-defined” means. There are a number of ways
of doing this. One (the stratified conception) holds that there are certain for-
mulas that are appropriately stratified, and that comprehension should be re-
stricted to these formulas.3 Another (the iterative property conception) holds that

2[Incurvati, 2020] disagrees with this, holding that the limitation of size conception is logical
but does not validate Universality. It’s not clear to me that the limitation of size conception
is in fact logical, but in any case we can view those (more precise) conceptions that validate
Universality as the relevant contrast cases for what we’re doing here. Later (§9.5) we’ll argue
that the classifications amongst the conceptions might not be sharp.

3( )The stratified conception is proposed by [Quine, 1937] and its history is nicely outlined
in [Incurvati, 2020]. One starts with the following definition:

Definition 16. A formula φ in the language of set theory is stratified iff there is an assignment
of natural numbers to variables such that:

(i) For any subformula of φ the form x = y, the natural number assigned to x is the same as
the number assigned to y.

(ii) For any subformula of φ the form x ∈ y, the natural number assigned to y is one greater
than the number assigned to x.
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there is a way of iteratively individuating those formulas that can be used in
comprehension (this is the approach of the property theories of [Fine, 2005],
[Linnebo, 2006], and [Roberts, MSa]). On each, the predicate x = x is well-
defined and individuates an extension.

The combinatorial conception, by contrast, needs to make precise what
“available” means. One way is to say that some sets are available iff they can be
depicted as part of a particular kind of graph (the graph conception). This concep-
tion, as it happens, also validates Indefinite Extensibility but refutes Univer-
sality.4 The iterative conception (the focus of this book) also refutesUniversality
whilst accepting Indefinite Extensibility (as we’ll see in more detail shortly).
So each conception is going to either deny Universality and accept Indefinite
Extensibility (as many combinatorial conceptions seek to do) or accept Uni-
versality and deny Indefinite Extensibility (in the manner of many logical
conceptions). This division is perhaps not quite perfect (it is unclear if all ver-
sions of the logical conception and combinatorial conception conform to this
template) but it is an instructive way of thinking about set-theoretic progress
for what we’ll do here.

With this in mind, let’s start to see how this plays out with respect to the
focus of this book, namely ‘the’ iterative conception of set.

4.2 Some iterative conceptions of set
We’ll consider a kind of combinatorial conception known as the iterative con-
ception. We’ll keep things rough and imprecise to begin with (this imprecision
will be helpful later when we separate out different versions of it):

Definition 17. (Informal) The iterative conception of set holds that sets are
formed in stages, and new sets are formed from old by collecting together sets
formed at previous stages. There are no other sets than those found at the stages.

The rough idea can be filled out as follows. We (or better—a suitably ide-
alised being) start at an initial stage with some initially given collection of ob-
jects. These could be a bunch of non-sets (often called Urelemente), or some an-
tecedently given sets that we take to be acceptable (e.g. the empty set).5 We then

By restricting comprehension to stratified formulas we obtain a system known as NF.
4Sincewewon’t discuss thismuch,we’ll set it aside, but see [Incurvati, 2020], Ch. 7 for details.

( ) The relevant notion is an accessible pointed graph, a kind of directed graph where there’s a
distinguished top node (this is the ‘pointed’ part of the definition, and you can think of this ‘point’
as the set we want to code), the edges code the membership relations, with accessibility meaning
that it’s possible to reach each node of the graph by some finite chain of edges starting from the
point.

5( ) Depending on what set-forming operations we allow, we have to be careful that
we don’t start with a proper class. If we do, some modification is needed, see for example
[Menzel, 1986] and [Menzel, 2014].
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begin forming new sets out of what we have using some given operations, and
in this way obtain the sets. So long as our operations always guarantee that new
sets can always be formed, we have an explanation of why Indefinite Exten-
sibility holds and Universality fails—there will never be a stage at which we
can use an operation to collect all the sets into a set.

The iterative conception of set as I’ve given it can in fact be split into two
conceptions, a strong one and a weak one:6

Definition 18. (Informal) The strong iterative conception of set holds that sets
are obtained in a sequence of stages. At each additional stage we form all possible
subsets of sets available at previous stages. There are no other sets beyond those
obtained this way.

Definition 19. (Informal) The weak iterative conception of set holds that sets are
formed in stages. Sets are formed by collecting together sets at previous stages
using some set-forming operations. We leave it open whether or not we get
every possible subset of what we have at a stage immediately after the current
one. There are no other sets beyond those obtained this way.

I want to suggest that the weak iterative conception is really prior to the
strong iterative conception (conceptually, if not chronologically). Key to the
weak iterative conception are:

(i) A description of what counts as a starting domain.

(ii) A description of some operation(s) for forming new sets from old.

The strong iterative conception says (i) can be any set of objects, but the
empty set will do, and (ii) that the operations consist solely of powerset (i.e. tak-
ing all possible subsets). It thus sharpens the weak iterative conception; since
there are other set-forming operations that we might have chosen. Let’s see an
example of the difference by going into more detail on each.

The strong iterative conception is perhaps the simplest version of the weak
iterative conception, so we’ll explore it first. It is also perhaps the ‘default’
version—as of writing, if you put the terms “iterative conception of set” into
a search engine, you’ll get back results about the strong iterative conception.
Assuming that we think that any subset of a set could exist, the strong iterative
conception amounts to asserting that the sets are obtained by iterating the pow-
erset operation (and if we have an infinite chain of stages we can throw them
together into a new stage). This idea can be formalised with the following defi-
nition using ordinal numbers:

6This distinction emerged in discussion with Chris Scambler, and I’m grateful to him for the
suggestion of separating out the two.
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Definition 20. The Cumulative Hierarchy of Sets or V is defined as follows:7

(i) V0 = ∅

(ii) Vα+1 = P(Vα), where α + 1 is a successor ordinal.

(iii) Vλ =
⋃

α<λ Vλ (if λ is a limit ordinal)

The structure of theVα thus captures the idea thatwe take all possible subsets
at each additional stage (i.e. iterate powerset) and collect them together at limits
(i.e. take a union).

The weak iterative conception is in some ways less well studied than the
strong iterative conception, possibly partly because the latter is seen as the de-
fault. However, since the weak iterative conception is more general and will be
important later, it will be worth getting it on the table (we will provide some
more details in Chapter 7).

We’ll see a few examples of the weak iterative conception in this book, but
some will have to wait until we have a couple of set-theoretic constructions un-
der our belt. For now, here’s an easier example to get a feel for it. Suppose we
want to build the hereditarily finite sets (i.e. finite sets that are built up out of
only finite sets all the way down—formally we say that the empty set is heredi-
tarily finite, and any other set is hereditarily finite just in case it is finite and all
its members are hereditarily finite). In standard set theory, we can get these sets
just by taking powersets from the empty set (i.e. moving up through each Vn for
every natural number n). But there are other ways we might build these sets.
Suppose we individuate sets in stages by starting with the empty set at stage 0
and forming at stage n+ 1 all sets of size at most n. At as we continue through
all the stages up to ω (the first infinite stage), we’ll eventually get every heredi-
tarily finite set. But we won’t get every possible subset at a successor stage. For
instance you can check that stage 4 has eight members, so you’ll miss out some
subsets of stage 4whenmoving to stage 5 (you’ll have towait until stage 8 before
you can form all subsets of stage 4). So this procedure is weakly but not strongly
iterative—there are possible sets that don’t get formed at the next stage.

We can also have processes that are not even linearly ordered, for instance
by having two or more set forming operations. For example, let the operation
Even! form the subsets of a stage with an even number of elements. The other
Odd! forms the odd numbered subsets of a given stage. By interleaving Even!
andOdd! finitely many times we can get any hereditarily finite set. But the pro-
cess is not linearly ordered, for instance we could choose to do Even! a bunch
of times in a row. One doesn’t even have a guarantee that you get every heredi-
tarily finite set using these processes (say if you just head off only iteratingEven!
over and over again).

7( ) For simplicity, I am giving the version for pure sets, if you want to include Urelemente
then clause (ii) should be replaced by Vα+1 = P(Vα) ∪ Vα.
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There aremoremathematically interesting kinds of weakly iterative process
and conceptions of set. Here’s a more difficult (but important) example:

Definition 21. (Informal) The constructibilist conception holds that sets are
formed in stages. Sets are formed by collecting together sets at previous stages
that are definable (i.e. can be picked out by a formula) over that stage. There are
no other sets beyond those obtained this way.

Is conception weakly or strongly iterative? We can show that there are ver-
sions of it that are only weakly iterative.

( ) Often set theorists will talk about the constructible universe (or L) and
constructible hierarchy. L is formed by taking definable powersets. A subset
x of the domain of a structure M is definable over M iff x is the unique set
containing all and only the y in the domain ofM satisfying φ(y) (inM) for
some condition φ(y) in the language ofM.a For a structureM, let’s call the
collection of all suchM-definable subsetsDef(M). ThenL can be defined
as:

Definition 22. The constructible hierarchy (or just L) is defined as follows:

(i) L0 = ∅

(ii) Lα+1 = Def(Lα) for successor ordinal α + 1

(iii) Lλ =
⋃

α<λ Lα for limit ordinal λ.

The axiom that every set is constructible i.e. ‘For every x there is an α
such that x ∈ Lα’ is called the Axiom of Constructibility or V = L.

Now the constructible hierarchy clearly satisfies theweak iterative con-
ception and the constructibilist conception. But it doesn’t satisfy the strong
iterative conception. This is because often new subsets of previous levels get
formed as we climb. For example, new subsets of ω coding new real num-
bers get formed as we move up through the first few stages above Lω . To
see this, note that a satisfaction predicate for Lα is definable over Lα+1, and
aboveVω thesewill codenew subsets of natural numbers. This phenomenon
(the slow growth ofL) is quite general. Since there are only as many formu-
las as there are parameters available (the usual formula-building operations
are trivial at infinite cardinals) we have that the cardinality ofLα is the same
as the cardinality ofLα+1 for every α (in stark contrast to the Vα-hierarchy
where Vα+1 is always bigger than Vα). So the Lα hierarchy does not sat-
isfy the strong iterative conception, there are possible subsets that don’t get
picked up when we move to a successor stage.
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Moreover, we could make the iteration more fine-grained and non-
linearly-ordered. I could take each formula to provide its own set-forming
operation, and think of successively forming subsets for specific formulas,
instead of taking the whole definable powerset. This would still qualify as
weakly iterative.

Note: Sometimes you can recover a version of the strong iterative con-
ception from the weak one. In the case of our n-sized-set-forming opera-
tion, we could eventually recover the Vn-hierarchy if we wait long enough.
This holds for the Lα-hierarchy too, for example if L satisfies ZFC, it can
recover its own version of the Vα-hierarchy. However, one still sees the dif-
ference between the two hierarchies, even when we assume that V is equal
to L and that ZFC holds, it is not the case that Vα = Lα for every α (the
Lα-hierarchy takes time to ‘catch up’).

aThis is fiddly to formulate. See Chapter 3, §5 of [Drake, 1974].

So there are really multiple sharpenings of the weak iterative conception.
One is the strong iterative conception. But others (e.g. the constructibilist con-
ception) aremathematically interesting and not strongly iterative. Clearly, some
of these conceptions can be used to motivate certain axioms (for example, the
constructiblist conception motivates the Axiom of Constructibility). But what
else is there?

4.3 ( ) Amodal stage theory for the strong iter-
ative conception

We want our conceptions of set to motivate virtuous theories. Later (Chapter
7) we’ll see how versions of the weak iterative conception other than the con-
structibilist conception can be used to do just this. For now, we’ll focus on the
‘default’ strong iterative conception and ZFC. In particular, I’ll:

(1.) Explain ZFC set theory.

(2.) Show how ZFC can be motivated on the basis of a modal axiomatisation of
the strong iterative conception.

So, let’s start by setting up ZFC:

Definition 23. Zermelo-Fraenkel Set Theory with the Axiom of Choice (ZFC) is
formulated in the language of set theory L∈. It comprises the following axioms
(we just give informal statements, formal definitions are available in many set
theory textbooks):

(i) Axiom of Extensionality. Sets with the same members are identical.
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(ii) Axiom of Pairing. For any two sets x and y there is a set containing just x
and y.

(iii) Axiom of Union. For any set x, there is a set of all elements of members of
x.

(iv) Powerset Axiom. For any set x, there is a set of all subsets of x.

(v) Axiom of Foundation. Every set contains an element that is disjoint from
it. The axiom both rules out self-membered sets and also the existence of
infinite descending membership chains.

(vi) Axiom of Infinity. There’s a non-empty set x such that for any member y
of x there is another member z of x such that y is a member of z. (This
guarantees that there’s an infinite set.)

(vii) Axiom Scheme of Replacement. If a formula φ(x, y) is function-like (i.e. for
any x, there is exactly one y such that φ(x, y), then the image of any par-
ticular set under φ(x, y) is also a set.

(viii) Axiom Scheme of Separation. If φ(x) is a formula in one free variable x,
then if y is a set, then there’s a set of all the x in y such that φ(x) (i.e.
{z|z ∈ y ∧ φ(z)} exists).

(ix) Axiom of Choice. (AC) For any non-empty set of pairwise-disjoint non-
empty sets, there is a set that picks one member from each. (Note: ZFC
without AC is just denoted by “ZF”.)

As noted earlier (Chapter 2) ZFC is a very nice theory of sets with many
theoretical virtues. But can it be motivated using the iterative conception?

There’s different ways to do this. One way is to axiomatise the notion of a
stage directly.8 A different way (and the approach we’ll focus on here) is to think
of the iterative conception as describing a particular kind of modal framework
where stages are worlds, and whatever set-forming operations we have provide
accessibility. This is a relatively old idea, going back to [Parsons, 1983], but the
idea has been fruitfully applied recently. In particular, [Linnebo, 2013] shows
how one can give a modal version of the strong iterative conception that moti-
vates ZFC. Giving the full details would take up too much space, but a flavour
of the approach will be useful.9

We’ll want to talk about reifying pluralities into sets, and for this Linnebo
uses a plural logic. Really though, any extensional second-order variables would
do. Since much of the literature (e.g. [Scambler, 2021]) follows this convention

8See here [Button, 2021a] for a recent article on the state of the art.
9Details can be found in [Linnebo, 2013] and [Scambler, 2021], and a different modal ap-

proaches in [Studd, 2013] and [Button, 2021b].
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of using plurals, we’ll stickwith it. Againwe’ll leave the plural logic relatively in-
formal, the reader wishing to see a concise presentation of the details is directed
to [Linnebo, 2014] or [Oliver and Smiley, 2013] for a textbook treatment. Plural
logic has new variables xx that range over ‘some things’ (e.g. the books on my
table), a binary relation symbol ≺ (where x ≺ xx is to be read as “x is one of
the xx”), with the expected definition of well-formed formula. We’ll denote the
language obtained by adding these resources to L∈ by “L∈,≺”. We’ll routinely
abuse singularisation and speak of “a plurality” (a standard move in this field).

For our plural axioms (here we’re mostly following the presentation in
[Scambler, 2021]) we’ll take the following:

Definition 24. Extensional plural logic has the axioms (again, we give axioms
informally, suppressing the formal details, see [Linnebo, 2014]):

(i) A principle of extensionality for plurals (that if two pluralities xx and yy
comprise the same things, then anything that holds of the xx also holds of
the yy and vice versa).

(ii) An impredicative comprehension scheme:

∃xx∀y
(
y ≺ xx↔ φ(y)

)
for any φ in L∈,≺ not containing xx free.

We then need a background modal logic to talk about moving between the
stages. For this we’ll add a modal operator ♦ to L∈,≺ to get a language L ♦

∈,≺,
with well-formed formulas as normal. We’ll also use the modal operator�, and
in this context �φ can be treated as shorthand for ¬♦¬φ. For modal axioms
we’ll use:

Definition 25. Classical S4 is the modal logic with an additional modal opera-
tor ♦ and the axioms:

(i) The necessity of identity and distinctness (these are sometimes optional,
but we’ll include them):

• x = y → �(x = y)

• x 6= y → �(x 6= y)

(ii) K: �(φ→ ψ) → (�φ→ �ψ) (this holds for any normal modal logic).

(iii) T: φ→ ♦φ (this holds if the accessibility relation is reflexive).

(iv) 4: ♦♦φ→ ♦φ (holds if the accessibility relation is transitive).

To obtain S4.2 we add:
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(v) G (sometimes called .2): ♦�φ→ �♦φ (holds if the accessibility relation is
directed).

The logic S4.3 is obtained by adding:

(vi) .3: (♦φ ∧ ♦ψ) → ♦
(
(♦φ ∧ ψ) ∨ (φ ∧ ♦ψ)

)
(holds if the accessibility

relation is linear).

Throughout, we will also assume:

(vii) The Converse Barcan Formula (CBF): ∃x♦φ→ ♦∃xφ (this can be thought
of as capturing the idea that domains only grow).

Because we have S4.2 you can think of the space of worlds as a kind of
branching time structure, butwhere you can always bring together any two pos-
sibilities (this is the content of the G/.2 axiom). Thus �φ can be though of as
saying “in all future worlds φ” and ♦φ as “there is a future world such that φ”.

Before we give the axioms for the stages, we should clarify how we’ll inter-
pret non-modal set theory. Mostly mathematicians will just want to work with
a non-modal axiomatisation of sets, without paying attention to finicky modal
details about how the sets are formed in stages. So we can ask: Is there a way
of interpreting non-modal set theories in L∈ into our modal language L ♦

∈,≺?
Given the iterative conception, how should we interpret the ‘usual’ quantifiers
∀ and ∃? Well, one natural thought is that ∀xφ should hold if no matter how you
form sets, φ will always hold, and ∃φ tells you that you can go on to form sets
such that φ. We can then provide:

Definition 26. Given a sentence φ in L∈, the potentialist translation of φ (de-
noted “φ♦”) is obtained by replacing every universal quantifier “∀” by “�∀”, and
every existential quantifier “∃” by “♦∃”.

We can then define a version of the modal stage theory axioms that is ex-
tracted from [Linnebo, 2013]:10

Definition 27. Lin is the following theory in L ♦
∈,≺:

(i) Classical first-order predicate logic.

(ii) Extensional plural logic.
10I’m basically following the presentation in [Scambler, 2021], with a few extra tweaks that

will be useful later. Scambler uses “L” to denote Lin, I’ve opted for syntax that avoids possible
confusion of Lin with the constructible hierarchy L. Strictly speaking [Linnebo, 2013] doesn’t
include the plural version of the Axiom of Choice (he is looking for interpretation with ZF,
which is all we need for getting the Vαs) but [Scambler, 2021] does (but he throws it in as part
of the plural logic, I include it as a hybrid plural-cum-set-theoretic axiom). With these systems
you get as much Choice out as you’re willing to throw in, and since we’re primarily interested
in ZFC in this book, I’m happy to throw it in.
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(iii) Classical S4.2 with the Converse Barcan Formula added.

(iv) The Axiom of Foundation (rendered as normal using solely resources from
L∈).

(v) Extensionality (again using solely resources from L∈).

(vi) Stability axioms for ≺ and ∈ (these mirror the necessity of identity/dis-
tinctness):

• x ∈ y → �(x ∈ y)

• x 6∈ y → �(x 6∈ y)

• x ≺ yy → �(x ≺ yy)

• x 6≺ yy → �(x 6≺ yy)

(vii) (Collapse♦) The principle that any things (at a stage) could form a set:

�∀xx♦∃y�∀x(z ∈ y ↔ z ≺ xx)

(viii) The axiom that there could be some things comprising all and only the nat-
ural numbers.

(ix) The axiom that there could be some things that are all and only the subsets
of a given set.

(x) Every potentialist translation of the Replacement Scheme of ZFC.

(xi) A plural version of the Axiom of Choice ‘For any pairwise-disjoint non-
empty sets xx, there are some things yy that comprise exactly one element
from each member of the xx’.

Together, these axiomatise the modal process of the strong iterative con-
ception. Given a world, there could be a plurality of all subsets of that world,
and these can then be reified into a set using Collapse♦. Lin thus gives a way of
getting at the strong iterative conception. But how does it relate to ZFC?

4.4 ( ) Mirroring theorems
The core concept will be the idea of Mirroring Theorems. These tell you how
you can go between the modal theories and the non-modal theories favoured by
mathematicians. In particular we can show:

Theorem 28. [Linnebo, 2010], [Linnebo, 2013] ZFC proves φ iff Lin proves φ♦.
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This theorem shows that the modal idea of reifying all pluralities into sets at
a stage (and continuing this into the transfinite) motivates ZFC concerning the
sets. Moreover, it shows how Lin is strongly faithful to ‘normal’ set theory under
the potentialist translation.11

Interestingly, the relationship goes back the other way too. Earlier, wemen-
tioned that the strong iterative conception suggests that the universe is formed
via the Vα hierarchy. But one can also show:

Theorem 29. [Linnebo, 2013] Over a model of ZFC, the Vα under ⊆ provide a
model for Lin.12

This shows that not only does Lin motivate ZFC, but if you accept ZFC then
you can also get a model for the modal process axiomatised by Lin.

One final piece of the puzzle ties everything together:

Theorem 30. (ZF) For every set x there is an ordinal α such that x ∈ Vα.

This theorem shows you that not only does ZFC allow you to define the Vα,
but you can prove that every set is contained therein. We’re now in a position
where (i) the strong iterative conception (as axiomatised by Lin) motivates ZFC,
(ii) ZFC allows you find a model for Lin, and (iii) ZFC proves that every set lives
in said model.13

So modal theories of the strong iterative conception and ‘standard’ set the-
ory, even if it’s perhaps too strong to say that they’re two sides of the same
coin, nonetheless fit verywell together. Modal stage theory, suitably formulated,
pushes the idea that ZFC should be true of the sets, and if ZFC is adopted, we
can show that a sensible modal stage theory is a mathematical fact of life—if you
have ZFC you also have the strong iterative conception and all the sets live there.
Finally, the picture explains why Indefinite Extensibility holds and Univer-
sality fails—the universal set never gets formed because at no stage is there
a plurality of all possible sets, at the next stage the powerset operation always
forms something new.

11( ) Indeed, this result can be strengthened to apply to very weak theories, Tim Button (in
[Button, 2021a] and [Button, 2021b]) has shown that one can go back and forth between tremen-
dously weak (i) theories of sets, (ii) theories of stages, and (iii) modal stage theories (the theories
in question do not even imply there are any sets!).

12( ) specifically a Kripke frame validating S4.3.
13( ) Of course thesemodelswill be proper-class-sized, so not ‘models’ in the ordinary sense

of the term. I suppress these metamathematical details.
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Chapter 5

Forcing as a process of
construction

In this chapter, I want to outline forcing in set theory, a way of adding subsets to
models. Thorough presentations are available in a wide variety of mathematical
texts and full detail would just bog down the reader in a book of this kind, so my
focus is on giving the informal ideas.

There’s two main reasons to go into depth on this topic. First, we’ll use forc-
ing to articulate the further versions of the weak iterative conception that we’ll
consider later. Second, forcing is tremendously important for understanding
much of the contemporary literature on the philosophy of set theory and the
intuitions that underlie much work in this field. So, having a good grasp of it is
no bad thing.

5.1 Forcing: The rough idea
Ahelpful way to understand forcing is by analogywith field extensions. Consider
the relationship between the fields of real numbers R and complex numbers C.
One way of thinking of obtaining C from R is via the idea of algebraic closure.
Intuitively speaking, we throw in solutions for

√
−1, and then by closing under

the field operations, obtain C.
Forcing is very similar. In fact, according to Cohen (a father of the tech-

nique), this analogy was part of his discovery.1 To see this analogy, let’s start by
considering the problem forcing was developed to solve. In particular, we were
trying to prove that the continuum hypothesis is independent from ZFC. Since
we knew that given a modelM of ZFC, CH is true in the constructible universe
of M (a fact proved by [Gödel, 1940]) one way to proceed was to find a way of
making a model of ¬CH from one satisfying CH. (One could then infer by the

1See [Cohen, 1963, p. 113] and [Cohen, 2002, pp. 1091, 1093]. Thanks to Carolin Antos for
some discussion of the history here.

37



CompletenessTheorem that neither CH nor its negation followed from ZFC, as-
sumingZFC consistent.) Sincewe also knew that (again proved in [Gödel, 1940])
Lwas the smallest innermodel (i.e. transitivemodel containing all ordinals) un-
der inclusion, the natural idea was to break CH by adding sets—much like we
could find a root for−1 by moving from R to C. And this is just what Cohen did
in [Cohen, 1963].

To think what we need to break CH, it’s helpful to think about what CH
and ¬CH say about sets of reals and functions. CH recall, says that every set of
reals (i.e. something with cardinality no bigger than 2ℵ0 ) is either countable or
the same size as 2ℵ0 . In this way, it says that there are lots of kinds of function
compared with the kinds of sets of reals—every infinite set of reals has a function
that either bijects it with ℵ0 (the cardinality of N) or 2ℵ0 (the cardinality of R).

¬CH by contrast, says that there are lots kinds of sets of reals as compared
with kinds of function—there’s some infinite set of reals x for which there’s no
bijection between x and ℵ0, but also no bijection between x and 2ℵ0 .

Let’s suppose then that we’re given a model M of ZFC + CH. What could
we do to break CH? Well, we need to (i) add some set x toM , whilst (ii) making
sure that we preserve the axioms of ZFC when we add x, and (iii) having a set of
reals y in the new model such that there’s no bijection between either y and the
new set of all reals or natural numbers. This what Cohen showed was possible
with forcing: Assuming ZFC is consistent, there’s a modelM satisfying ZFC (by
Completeness). Either (i)M satisfies ¬CH (in which case we’re done) or (ii)M
satisfies CH. If (ii), we can then add a bunch of reals G to M , and close under
definable operations to form an extension M [G] satisfying ZFC. In this new
modelM [G], you can show that the old set of reals fromM is a set of reals that
is neither bijected with ℵ0 nor 2ℵ0 inM [G].

If you haven’t encountered forcing much before, I want the reader to now
stop and pause to think about how, given the rough idea of forcing, we might be
able to take a model of ¬CH and make CH true again by adding sets. What kind
of set could we add to a model of ¬CH in order to restore CH again (and what
would we have to simultaneously avoid adding)? (Bear in mind that you can’t
add natural numbers by forcing—a student oncemade the ingenious suggestion
to me that we bump up the size of ℵ0. Alas, this doesn’t work since forcing
keepsmodels transitive, and the natural numbers are isomorphic in all transitive
models of set theory.)

The answer is that we need to add functions that provide the relevant bijec-
tions between the old sets of reals and either ℵ0 or 2ℵ0 , and do so (i) without
adding reals, and whilst (ii) preserving ZFC. Again, Cohen showed that forcing
lets you do this. Given anM satisfying ¬CH, one can collapse the cardinals be-
tweenℵ0 and 2ℵ0 toℵ0 by adding a setH that allows you to get surjections from
the naturals numbers to these cardinals. In the new model M [H], CH is true,
since there are now bijections between ℵ0 and the old ‘cardinals’ between 2ℵ0
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andℵ0 (i.e. things that were cardinals betweenℵ0 and 2ℵ0 in the ground model).
These two kinds of forcing are sufficient to show the following:

Theorem 31. Given a modelM of ZFC, so long as we can do forcing overM ,
thenM has:

(1.) An extensionM [G] such thatM [G] satisfies ¬CH. This can be done using
forcing that collapses no cardinals—it does not add new bijections that make
any set look smaller than before.

(2.) An extensionM [H] such thatM [H] satisfies CH. This can be done by forc-
ing whilst adding no new reals—we don’t add any new subsets of the natural
numbers.

In this sense CH is like a set-theoretic light switch as regards forcing—we
can flip it on and off at will by successively forcing to add new sets, and all whilst
preserving ZFC.2 Indeed, forcing is incredibly flexible. An example that will be
important for us is the following:

Theorem 32. Assume that we can always force over M . Then for any set x in
M , there is a forcing extensionM [G] in which x is countable.

As above, the idea for proving this theorem is just to add a surjection from
ℵ0 to x.

Forcing thus provides us with a very controlled way of adding subsets to
models. We’ll discuss this a little in a -section below (§5.2), but it will be help-
ful to indicate the shape of what is to come. Forcing, I want to contend, can be
thought of as a process for adding subsets to a universe and in particular might
be a way of generating sets under the weak iterative conception. Using this idea,
we’ll end up with the motivation of a concept of set on which every set is count-
able, since given a set x at some stage, we could always add a function by forcing
that makes x countable.

5.2 ( ) A little more depth on forcing
In this section I add a little more mathematical detail and provide an intuitive
characterisation of forcing. This whole section is a -section, so the reader
shouldn’t get bogged down in the details unless they really want to. Still, the
section will help inform the idea that we can think of forcing as a set-forming
process, so I recommend at least giving it a go. Good introductions to this ma-
terial can be found in [Kunen, 1980] and its update [Kunen, 2013] (a wonderful
pair of books explaining a range of issues in detail), [Drake and Singh, 1996] (a

2This terminology of ‘switches’ is from [Hamkins and Loewe, 2008].
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nice concise introduction), and [Weaver, 2014] (a much easier-going introduc-
tion before the applications starting in Ch. 14). Many set theory texts contain
an introduction, however, and the reader should feel free to shop around.

We’ll start with an example that will help us follow what comes later a bit
better. We’ll take the idea of adding a Cohen real. Let’s suppose that you’re in
a model of ZFC. For now, we’ll assume that the model is countable (and tran-
sitive) and so (by Cantor’s Theorem for the reals) misses out a whole bunch of
real numbers. For our purposes, you can think of a real number as an infinite
ω-length sequence of 0s and 1s (this, in turn, can be thought of as a function
from the natural numbers into {0, 1}, which says whether there’s a 0 or a 1 in
the nth place). I want to now add in a new real number, and do so in such a way
that ZFC is satisfied. So I slowly go through deciding on what I want in the nth

place of my new real for eachn (perhaps not in order). I need to do two things (i)
make sure I’m avoiding the reals ofM (i.e. I don’t get something I already have),
and (ii) make sure that when I’m done I close under new definable operations
to ensure ZFC is true. This is what forcing lets you do. Such an object (a new
ω-length sequence of 0s and 1s) is our new real number (our ‘Cohen real’).

Let’s now take a little peek into the machinery of how we do this. The way
I suggest thinking of forcing is as a way of talking about descriptions of collec-
tions that can change their members as we make certain decisions. In the end,
if we make decisions in exactly the right way, we’ll end up defining a new object
that isn’t currently in the universe we start in, and fill in all the needed sets to
make ZFC true. The rough ingredients of forcing are the following (i) a partial
order P = (P,<P) with certain nice properties that make it sufficiently ‘inter-
esting’. You can think of P as the space of possible ‘decisions’ that we might take.
(ii) P-names, these are descriptions of collections that can change their mem-
bership depending on what decisions we take from P, (iii) dense sets, these are
like advisors, no matter what decisions you’ve taken, they’ll always recommend
at least one more you might go on to take, and (iv) a generic filter, this you can
think of as a complete description of all the decisions thatwere taken in the limit,
consistent with every recommendation given by an advisor. Let’s look at these
in more detail.3

First, we need the notion of a forcing partial order (P,≤P). Before we give
the definition, a couple of notes are in order:

• Note 1: We often refer to elements of the partial order as ‘conditions’.

• Note 2: Here the partial order grows ‘downwards’—the intuition being
that if p <P q, you’ve got a smaller range of possible decisions after p

3Note: Often authors (e.g. [Drake and Singh, 1996], [Weaver, 2014]) write in information-
theoretic terms, P is a space of information, and we slowly get more and more fine-grained in-
formation as we move through P. The way I’m expressing things is essentially equivalent, but a
bit easier to think about philosophically, and brings the ‘variable set’ way of thinking to the fore
a little more.
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as compared to q. Some people write p >P q to indicate the same state
of affairs, the intuition being that you’ve got more information from q as
compared to p.4

We now define:

Definition 33. A forcing partial order P = (P,≤P) is a partial order P such that:

(i) P has a maximal condition 1P

(ii) P is atomless—any element of p of P has incompatible extensions (i.e.
there’s q ≤P p and r ≤P p such that there’s no swith s ≤P q and s ≤P r).

The way I’m going to suggest one thinks about this partial order is as an
information space of possible decisions for settlingmembership facts. Aswe’ll see,
we can define a class of ‘names’ for possible sets (these are called P-names). These
we can think of as having their membership facts settled as we take decisions
through P. The conditions of being atomless one can think of as a condition
on P being sufficiently interesting or non-trivial—there’s always incompatible
decisions one couldmake aboutwhere to go, and there’s no part of P that admits
of ‘inevitability’.

In the specific case of adding aCohen real, we candefine the followingpartial
order:

Definition 34. Given some modelM , the forcing partial order to add a Cohen
real has as its domain (inM ) all partial functions from ω into {0, 1} and p ∈ P
extends q (i.e. p ≤P q) iff p extends q as a function (i.e. q’s domain is a proper
subset of p’s, and they agree on all arguments from q’s domain).

This order gives us a way of thinking of settling the nth place of a new real—
as we move down through P we settle more and more values for a new real to
be defined. In the limit, we’ll have settled every bit of the real.

How to get a handle on this idea of ‘settling values’? For this we’ll need the
definition of a P-name. The definition looks somewhat complicated, but it can
be given an intuitive backing.

Definition 35. A P-name is a relation τ such that ∀〈σ, p〉 ∈ τ(‘σ is a P-name’
∧p ∈ P ). In other words, τ is a relation that relates P-names to conditions of
P.

The definition looks circular, but in fact is not since the empty set is trivially
a P-name. You can think of the P-names as relations where other P-names are
related to conditions in P.

4See [Drake and Singh, 1996], p. 155, Warning 8.8.2 for discussion.
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The intuition to have in mind is that a P-name is the name for a possible set.
Given a bunch of good ‘decisions’ from P (we’ll talk about this idea of ‘a bunch of
good decisions’ in a second, the key notion is that of a generic filter) we’ll evaluate
the P-names to different sets in the extension. The way this works is given a P-
name σ, we’re going to rule in or out other P-names in domain of σ according
to whether or not they’re related to a condition in our new object (these names
will in turn have been evaluated according to different decisions). So P-names
are kind of ‘variable collections’—they can change their mind as to what they
contain as we move about in P.5

The next notion we need is:

Definition 36. We say thatD ⊆ P is dense iff for every p ∈ P, there is a q ∈ D
such that q ≤P p.

The way of thinking about a dense set D is that it’s kind of like a advisor.
No matter where you are in P, and what decisions you’ve taken,D can come up
with at least one decision you could take to continue.

Next we need the notion of a generic filter:

Definition 37. G ⊆ P is a filter on P iff:

(i) G is non-empty.

(ii) p ∈ G and q ≥P p implies that q ∈ G (i.e. G is closed upwards).

(iii) p ∈ G and q ∈ G implies that there is an r ≤P p, q with r ∈ G (i.e. G
brings any two elements together).

We furthermore say thatG isM-P-generic (for some modelM ) iffG inter-
sects every dense set of P inM . (We’ll often just abbreviate this to ‘generic’ and
let context determine the values of P andM .)

The way to think of such a G is that it is a kind of ‘maximal’ collection of
‘good decisions made’. If you include a decision p ∈ G, then you’ve got to in-
clude any earlier decisions that could have lead there, and also you’ve also got to
bring together any two decisions together later (there’s no including incompat-
ible decisions allowed). You’ve also got to be ‘good’ in that you agree with every
advisor (i.e. dense set) in at least one place. Part of what genericity ensures is
that you don’t encode any ‘extra’ information in what you add.

We can then talk about what happens to a P-name when presented with a
genericG.

Definition 38. We evaluate P-names by letting the value of τ underG (written
‘val(τ,G)’ or ‘τG’) be {val(σ,G)|∃p ∈ G(〈σ, p〉 ∈ τ)}.

5( ) Interestingly the idea of ‘variable collection’ correspondswell to the category-theoretic
approach to forcing. See the Appendix to [Bell, 2011].
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Again, this looks complicated, but the intuition is as follows. Remember
that a P-name can be thought of as a kind of ‘variable collection’ or ‘name for
a possible set’. When we give some G to a P-name τ , we evaluate stepwise by
analysing the valuation of all the names in the domain of τ and then we add
them to τG according to whether they’re related to some p ∈ G. In particular, if
σ is a P-name in the domain of τ , then we put σG into τG if there is a 〈σ, p〉 ∈ τ
for which p ∈ G (and throw σG out of τG otherwise). So you can think of us
running through the p ∈ G and throwing in or out already evaluated P-names
according to whether a name is related to some p ∈ G.

Let’s return to our example of adding a Cohen real. Consider the following
conditions from the poset to add a Cohen real:

• f is defined by:

– f(0) = 1

– f(3) = 0

• g is defined by:

– g(0) = 0

– g(3) = 0

Now consider the following names:

• τ = ∅

• σ = {〈τ, f〉}

• µ = {〈τ, f〉, 〈σ, g〉}

• ν = {〈τ, f〉, 〈τ, g〉, 〈σ, f〉, 〈σ, g〉, 〈µ, f〉, 〈µ, g〉}

Let’s suppose that f ∈ G but g 6∈ G. So this says that the first bit of our new
real is 1, and the third bit is 0. What happens to our P-names underG? Well, τ is
trivial and so remains unchanged. We now have a value τG for τ , so the values σ,
µ, and ν will contain τG = ∅ (since we have 〈τ, f〉 ∈ σ, µ, ν). The evaluation of
σ is now complete, and we know that σG = {∅}. For µ, since we know g 6∈ G,
we throw out the evaluation of σ from µG, and so µG = {τG} = {∅}. For ν ,
whilst we do have a bunch of P-names correlated with g (and so the evaluation
of those names don’t make it in via any ordered pair of the form 〈ξ, g〉) we also
have that ν contains 〈τ, f〉, 〈σ, f〉, and 〈µ, f〉 and so the interpretation of these
names gets thrown in. So νG = {τG, σG, µG} = {∅, {∅}}.

Of course things are much more complicated when we move to names with
more structure (in particular once you have big infinite names things are going
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to get more subtle). But I hope the rough idea is clear. We have a ‘space of possi-
ble decisions’ (the partial order P), a bunch of names that can change their mind
about what they contain when presented with some ‘decisions’ from P (i.e. the
P-names), and a bunch of ‘advisors’ (the dense sets) each of which can always
present to you a way of continuing after some point in P. We’re then given a
‘maximal good bunch of decisions’ (the genericG), that agrees with every dense
set at some point and lets you find your way through P by giving you conditions
from P. G tells each P-name who they are by ruling in and throwing out (evalu-
ations of) P-names based on whether the names in the domain of a P-name are
related to the decisions inG.

Other partial orders that are especially important are:

Definition 39. Forcing to add κ-many Cohen reals.

• P is the collection of all finite partial functions (inM ) fromκ×ω to {0, 1}

• p ≤P q iff p extends q as a function.

A generic for this partial order doesn’t just add a Cohen real and then close
under definability, it adds κ-many. One can then show that you don’t destroy
any cardinals (this is a non-trivial lemma6) by adding a generic for P. This then
let’s you infer (picking big enoughκ) that¬CHholds inM [G], even ifM satisfies
CH, all the cardinals betweenω and κ inM are now cardinalities betweenω and
κ of different sets of reals inM [G].

As mentioned earlier, any cardinal can be collapsed to the countable using
forcing. This is done using:

Definition 40. The forcing to collapse κ to ω is defined by:

• P is the collection of finite partial function from ω into κ.

• p ≤P q iff p extends q as a function.

A generic for this partial order allow us to get a surjection from ω to κ, and
collapse the cardinality of κ (and any sets bijective with κ) to ω.

These represent just a taste of some of the possibilities available using forc-
ing. As Joel-David Hamkins writes (about model-building methods including
forcing):

Set theorists build models to order. [Hamkins, 2012, p. 417]

So forcing is a flexible tool that gives us a way of adding sets to models.
There’s two points we should note. First:

6See, for example, [Weaver, 2014, p. 50], Theorem 13.3.
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Fact 41. If P is a forcing partial order in a model M of ZFC, and G is P-M-
generic for P, thenG 6∈M . In particular P−G = {p|p ∈ P∧ p 6∈ G} is dense
(and clearly missed byG).

This fact will be a little important later when we relate ‘paradoxes’ related to
forcing and the Russell/Cantor reasoning (I relegate a proof to a footnote7).

Fact 42. LetM be a transitive model satisfying ZFC and letM [G] be the model
obtained by evaluating all the P-names for a forcing partial order P andM-P-
genericG. ThenM [G] also satisfies ZFC, and in particularM [G] is the smallest
transitive model of ZFC containing both every element ofM andG.8

The strategy for proving this is to ‘cook up’ P-names that you know (by the
genericity of G) will ensure that ZFC is satisfied. But the fact that you get the
smallest possible extension is is important: It shows that you can think of the
addition of a forcing generic G and evaluating the P-names as throwing in G
and closing under definable operations—i.e. you don’t get any ‘extra’ sets than
what is required to get ZFC by throwing inG so long asG is generic. In thisway,
the P-names and evaluation procedure conspire to make sure the construction
ofM [G] is very tightly controlled. This further reinforces the similarity between
forcing and more mathematically familiar constructions like obtaining the field
of complex numbers from the field of real numbers. There, we take R, throw in i,
and close under the usual field operations to get C. Indeed, C is the smallest such
field. So with forcing, M [G] is the smallest model of ZFC you get by throwing
inG and closing under every operation you can define.

Moreover, there’s a sense in which finding such a G can be thought of as a
process in its own way. If we’re given a forcing partial order P and a family of
dense setsD (let’s let each dense setDi inD be indexed by some i in an index set
I ), we can think of successively hitting eachDi in such a way that we extend our
previous choices. What we obtain in the limit will be a generic that hits every
Di inD.

I hope that the reader finds the above helpful, and in particular it can serve
as an intuitive road-map if you want to learn forcing in detail (alongside an in-
troductory text). Before we move on, I want to identify:

Main Philosophical Upshot. You can think of moving fromM toM [G]
by forcing as a way of generating new sets.

7Proof. Suppose p ∈ P. We must show that there is q ∈ P − G such that q ≤P p. The
only non-trivial case is where p ∈ G. Because P is non-atomic, there are incompatible r and
s extending p. But then one of r and s isn’t in G—all elements of G are compatible with one
another.

8See [Kunen, 2013], Lemma IV.2.19.
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Chapter 6

A ‘new’ kind of paradox?

In this chapter I want to argue that there’s a tension at the heart at the heart of
set theory. We’ll then (Chapter 7), explain how this can be resolved into different
conceptions, much as we saw with the naive conception of set.

6.1 The forcing-saturated strong iterative con-
ception of set

A popular thought in set theory is some idea of maximality, the idea that there
should be asmany sets as possible.1 Given the thought thatwewant the universe
to be closed under lots of different kinds of operation, wemight think it’s natural
to hold the following conception of what the sets are like:

Definition 43. (Informal) The forcing-saturated strong iterative conception of set
holds that sets are formed in stages. There are two operations. One can either
(i) form the set of all possible subsets of the stage, or (ii) add in a generic for a
partial order and a family of dense sets.

So, we have two operations. We can either add in a forcing generic, or we
can form the powerset of a set. Clearly then, we have:

Powerset. The Powerset Axiom holds.

We’re going to shortly see some conflicts with Powerset. We therefore de-
fine:

Definition 44. ZFC with the Powerset Axiom removed and with Separation
and Collection (the principle that the range of a a function on a set is contained
in some set) will be called ZFC−.

1See [Incurvati, 2017] for a survey of this idea in set theory.
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( ) Note: Dropping the Powerset Axiom is a slightly subtle business.
Simply deleting it results in a theory weaker than one would like. In-
stead, one should substitute schemes of Separation andCollection (the prin-
ciple that the range of a function is contained in some set) for Replace-
ment, as these are not equivalent without Powerset. See [Zarach, 1996] and
[Gitman et al., 2016] for discussion.

Since, we can also introduce a generic for any forcing partial order and fam-
ily of dense sets under the forcing-saturated strong iterative conception, we’ll
introduce the following axiom:

Definition 45. (ZFC−) By the Forcing Saturation Axiom or FSA we mean the
claim that for any partial order and set D consisting solely of dense sets for P,
there is a genericG intersecting every member ofD.2

The forcing saturated strong iterative conception thus motivates:

Forcing Saturation. The Forcing Saturation Axiom holds.

Readers familiar with forcingmay already see the problemwith the forcing-
saturated strong iterative conception. For the reader that isn’t, I want them to
briefly pause and think about what Powerset entails (especially in light of Can-
tor’sTheorem) andwhat follows fromForcingSaturation (especially given col-
lapse forcings).

6.2 The Cohen-Scott Paradox
Here’s the problem: The forcing-saturated strong iterative conception moti-
vates both Powerset and Forcing Saturation, but they’re inconsistent with
one another. This mirrors how the naive conception was brought down by
Universality and Indefinite Extensibility. I’ll refer to the paradox I’ll give
as the Cohen-Scott Paradox as it originates with the mathematical work of Co-
hen, and Scott was one of the first to propose the tension I’ll identify. The
paradox is thus not really that ‘new’, and the idea that there might be a ten-
sion between wanting uncountable sets and forcing has been around since at
least the 1970s. However, recentwork has developed the philosophy andmathe-
matics of these ideas substantially, including [Meadows, 2015], [Scambler, 2021],
[Builes and Wilson, 2022], and [Barton and Friedman, MS].3

Letting “Powerset” denote the Powerset Axiom, the current theory moti-
vated by the forcing-saturated strong iterative conception is ZFC− + Powerset

2See [Barton and Friedman, MS], Definition 9.
3Naming the problem “TheCohen-Scott Paradox” is taken from [Barton and Friedman, MS].
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+ FSA. But we can nownote that becausewe can produce a generic for any forc-
ing partial order and family of dense sets, we can use the collapse forcing to add
a generic making any set countable. In fact, we can note the following:

Fact 46. (ZFC−) The forcing saturation axiom is equivalent (modulo ZFC−) to
the axiom “Every set is countable”.4

We can now present the Cohen-Scott Paradox:

The Cohen-Scott Paradox. Simply put, ZFC− + Powerset + FSA implies
that there are uncountable sets (by Cantor’s Theorem and the Powerset Ax-
iom) but also that every set is countable (by the Forcing Saturation Axiom).
Contradiction!

Before we continue, I want to emphasise: No reasonable classical set theo-
rist has ever accepted bothForcing Saturation andPowerset in this generality.
Perhaps someone learning forcingmight unwittingly fall into the trap of accept-
ing the forcing-saturated strong iterative conception, or perhaps its appealing to
a theorists of a dialethic persuasion. But set theorists are a clever bunch, and they
are able to see this contradiction coming a mile off. In fact, this tension has been
noticed for a while. Discussing forcing in the introduction to Bell’s book on the
subject, Dana Scott writes:

I see that there are any number of contradictory set theories, all ex-
tending the Zermelo-Fraenkel axioms: but the models are all just
models of the first-order axioms, andfirst-order logic isweak. I still
feel that it ought to be possible to have strong axioms, whichwould
generate these types of models as submodels of the universe, but
where the universe can be thought of as something absolute. Per-
hapswewould be pushed in the end to say that all sets are countable
(and that the continuum is not even a set) when at last all cardinals
are absolutely destroyed. [Scott, 1977, p. xv]

So the Cohen-Scott ‘Paradox’ is certainly not new, and was noticed from the
inception of forcing. So if it’s so obviously bad, why even consider the forcing-
saturated strong iterative conception? The reason to do so is not that individual
agents hold it, but that it forces us to face a possible choice. Much as we saw with
the naive conception, there’s different ways we could go. We could adopt a ver-
sion of the logical conception that validates Universality. Or we could adopt
a version of the combinatorial iterative conception that on which Indefinite
Extensibility holds. Similarly, we could now adopt Powerset (for example by

4This is a well-known folklore result, but see Fact 10 of [Barton and Friedman, MS] for de-
tails.
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holding the strong iterative conception) orwe could adopt a conception that val-
idates Forcing Saturation. We’ll explore this in more detail shortly (in Chapter
7). For now I want to consider the relationship between the Cohen-Scott Para-
dox and diagonalisation, before we go on to consider how we might resolve the
paradox.

6.3 ( ) The Cohen-Scott Paradox and diagonal-
isation

To see the link with ‘diagonal’ arguments, we start with the question:

Question. What (if any) is the link between the Russell-Cantor reasoning and
the Cohen-Scott Paradox?

We have already seen a tight link between Russell’s Paradox and Cantor’s
Paradox in Chapter 3—in the case where we first take the universal set, then
consider the identity surjection/injection, and then run the standard proof of
Cantor’s Theorem, we get the Russell set.

There is a superficial similarity here, in that the (un)countability of some set
x can be viewed as a claim about the (non-)existence of a surjection from ω to x.
But is there any deeper similarity?

As mentioned earlier, the assumption that every set is countable (i.e. for any
set x there is a surjection from ω to x) is equivalent (over ZFC−) to the claim
that for any forcing partial order and any set-sized family of dense setsD, there
is a generic intersecting D (i.e. the Forcing Saturation Axiom).5. We can now
present the following ‘diagonal’ version of the Cohen-Scott Paradox.

The Cohen-Scott Paradox, Diagonal Version. If the Powerset Axiom is
true, then the family D∗ of all dense sets for P is a set-sized family. By the
Forcing Saturation Axiom, there is a genericG intersecting every member
of D∗. Now consider E = {p|p 6∈ G}. It’s an exercise to show that E is
dense, the interested reader can go back and find the proof in Chapter 5.
Since G is generic for D∗ and E is dense, we know that G intersects E at
some point p. But then we have p ∈ G ↔ p ∈ E (by choice of p), but
p ∈ E ↔ p 6∈ G (by the definition of E), and so p ∈ G ↔ p 6∈ G (putting
together the biconditionals), contradiction!a

aSee here also [Meadows, 2015] for emphasis of this diagonal version of the Cohen-
Scott Paradox

The point to note here is that there is a similarity to the Russell-Cantor rea-
soning. There we had the assumption of the existence of a particular surjection

5( ) See [Barton and Friedman, MS], Fact 16.
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leading to contradictory claims about (non-)self-membership. Here we have the
existence of an surjection, whilst not leading to contradictory claims about self -
membership, we do have the contradictory p ∈ G↔ p 6∈ G. Sowhilst the anal-
ogy is not perfect, we have a diagonal-style contradiction obtained by assuming
the existence of a particular surjection. We’ll discuss a possible significance of
this in §9.3.

To sum up, we’ve seen that:

(1.) There is a tension between Forcing Saturation and Powerset

(2.) This can be put in terms of a diagonal argument, with similarities to the
Russell-Cantor reasoning.

So, what to do about this state of affairs?
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Chapter 7

Countabilist conceptions of
iterative set

We’ve identified a tension between Forcing Saturation and Powerset, in anal-
ogy with Universality and Indefinite Extensibility. And just as before, we
can move forward by dropping one of the two. One way is to just hold that
Forcing Saturation should be dropped and Powerset accepted. This pushes
us towards the strong iterative conception and the modal stage theory given by
Lin. But might there be a way of going forward with Forcing Saturation in-
stead of Powerset? In this chapter we’ll see some stage theories that validate
Forcing Saturation. In the next (Chapter §8) we’ll discuss how these concep-
tions interpret mathematics, and compare the two approaches in light of the
theoretical virtues adumbrated in Chapter 2.

7.1 Countabilist stage theories
As we’ll see shortly, if you’re going to have Forcing Saturation, then every set
is going to be countable. For the sake of brevity, it will be helpful to introduce
some terminology:

Definition 47. The countabilist axiom (or Count) is the axiom ‘Every set is
countable’.

Definition 48. (Informal) We will refer to the view that holds Count as count-
abilism (with countabilist the corresponding adjective).

It’s fair to say that countabilist options for the (weak) iterative conception
been a lot less studied than the ‘standard’ strong iterative conception, and so we
will have to proceed with a little more care in articulating the alternative. This
way of viewing the sets is still somewhat nascent with much work still to be
done, and we will have to be cautious in our conclusions. It is less solidified than
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the standard strong iterative conception, and I don’t want to overstatemy case. I
do want to identify, however, that it’s an attractive alternative. This section, then,
will have the flavour of explaining a promising road of inquiry, rather than the
highly solidified picture of the strong iterative conception.

SincewehaveCount for the countabilist, we can’t have uncountable sets. For
this reason, we’re going to have to drop the Powerset Axiom and adopt ZFC− +
Count. Since we don’t have the Powerset Axiom (indeed we have its negation)
we don’t have the Vα, and so we’re going to have to adopt the weak iterative
conception, rather than the strong iterative conception. So the question then
becomes: Given that the Vα are out, what could our stages be, and how are they
given? Recall that for any weak iterative conception we need:

(i) A description of what counts as a starting domain.

(ii) A description of some operation(s) for forming new sets from old.

Can we come up with weakly iterative stage theories for the countabilist,
and thereby give a story along the lines of (i) and (ii)?

7.2 Reify! and Generify!
I want to argue that there are proposals in the literature that can be viewed as
providing stage theories for countabilist versions of the weak iterative concep-
tion. Before I mention some concrete proposals, I want to identify some moti-
vations in the literature.

Regarding (i): Whatmight the processes be? Well, one possibility is familiar—
given some stagewewant a notion of forming sets out of the classes of that stage.
This is what the Powerset Axiom codifies—every possible class at some stage
Vα is reified into a set (if it didn’t already exist) at Vα+1 and can be formalised
modally by Lin. But note, we don’t have to turn every possible class in a set at
a subsequent stage. This is made clear by the constructibilist conception and
the constructible hierarchy, atLα+1 we reify those classes definable overLα into
sets. For example, we’ll get the ‘universal class’ of the previous stage at the next
one, since x = x is a perfectly good formula. So, one class of operations are
given by what I’ll call Reify! commands; they take some ‘proper classes’ of the
domain and reify them into sets.

However, as I hope I convinced the reader in Chapter 5, another kind of
operation for adding sets is forcing. We can thus think of having, in addition to
whateverReify! commandswe employ, an operationGenerify! whichwill take
in a partial order P and familyD of dense sets, and spit out a generic for P andD.
Closely linked is the operation Enumerate! that adds an enumeration between
a set and the natural numbers. There are a class of Enumerate! commands that
can be thought of as special cases of the Generify! operation, in particular the
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specific case of the forcing that adds a surjection from the natural numbers to a
set. If we think that the stages should supportGenerify!, thenEnumerate! will
always be executable. This idea has been advocated recently by a few authors.
For example, Chris Scambler writes:

The guiding idea...is to introduce another way of extending a given
universe of sets as an option at each stage of the process. Specifi-
cally, we will imagine we are capable not only of introducing sets
whose members are among already given things..., but also of in-
troducing new functions between already given (infinite) sets, and
in particular of introducing functions defined on the natural num-
bers and whose range contains any set as a subset [Scambler, 2021,
p. 1088]

Jessica Wilson and David Builes express a similar idea (partly drawing on
[Scambler, 2021]):

Recall that any set-theoretic universe is ultimately generated by
two sorts of processes: the powerset operation and the length of
the ordinals. Proponents of height potentialism maintain that the
length of the ordinals is indefinitely extensible: necessarily, for
any ordinals, there could always be more. The modal approach
to [Cantor’s Theorem] simply extends this line of thought to the
powerset operation: necessarily, for any subsets of an infinite set,
there could always be more. This is width potentialism. For any
set-theoretic structure, there is both a taller one and a wider one.
[Builes and Wilson, 2022, p. 2212]

Recall how we could use Even! and Odd! to obtain the hereditarily finite
sets. Canwe thinkof interleavingReify! andGenerify! to obtain a stage theory
for countabilist set theories? The answer is yes.

7.3 ( ) A reifying and generifying modal stage
theory

[Scambler, 2021] has provided a theory of worlds that can be thought of as pro-
viding a modal stage theory for countabilist versions of the weak iterative con-
ception. He starts with the background of L ♦

≺,∈ but adds two modal operators
〈v〉 (for ‘vertical’ modality—reifying the pluralities of the model into sets) and
〈h〉 (for ‘horizontal’ modality—adding in subsets via forcing). Call this language
L ♦,〈h〉,〈v〉

∈,≺ . Boxes [h]φ and [v]φ are defined as ¬〈h〉¬φ and ¬〈v〉¬φ as usual. In
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this context, the general ♦ can be thought of as ‘possible by iterating either op-
eration’.

Scambler then provides the following axioms [Scambler, 2021, p. 1091]:

Definition 49. Sca consists of the following axioms in L ♦,〈h〉,〈v〉
∈,≺ (again, I focus

on giving more intuitive statements, the reader should go to [Scambler, 2021]
for the formal details):1

(i) Classical first-order logic.

(ii) Extensional plural logic.

(iii) Classical S4.2 with the Converse Barcan Formula for every modality.

(iv) The necessity of distinctness and stability axioms for ≺ and ∈ (Scambler
calls these ‘definiteness axioms’, but we’ll follow [Linnebo, 2013]’s termi-
nology).

(v) The Axiom of Foundation (the standard one from ZFC).

(vi) Extensionality for sets (again, no different from ZFC).

(vii) Weakening Schemas: 〈h〉φ→ ♦φ and 〈v〉φ→ ♦φ, for every φ.

(viii) Vertical collapse: 〈v〉∃y�∀z(z ∈ y ↔ z ≺ xx).

(ix) The axiom that there could vertically be some things that necessarily com-
prise all and only the natural numbers: 〈v〉∃xx�∀y(y ≺ xx ↔ ‘y is a
natural number’).

(x) Subset Comprehension. The axiom that its vertically possible to
have some things that are vertically necessarily all the subsets of a set:
∀z〈v〉∃xx[v]∀y(y ≺ xx↔ y ⊆ z).

(xi) PossibleGenerics. Theaxiom ‘IfP is a forcing partial order anddd is some
dense sets of P, then it’s horizontally possible that there is a filter meeting
each dense set that is one of the dd’.

(xii) The plural version of the Axiom of Choice ‘For any pairwise-disjoint non-
empty sets xx, there are some things yy that comprise exactly one element
from eachmember of thexx’ (Scambler throws this inwith the plural logic,
but as before we’ll keep it separate).

1Scambler uses the term “M” (for Meadows) to denote Sca, as he takes inspiration for his
view from [Meadows, 2015]. As we’ll see below, Meadows’ work (drawing on [Steel, 2014]) is
slightly different (he does not have a vertical modality), therefore I’ve chosen the term “Sca”.
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Some of these axioms deserve a mention. The Weakening Schemas are
meant to capture the idea that there if I could get a set by either reifying plural-
ities into sets or forcing, then such a set is possible simpliciter. Vertical Col-
lapse axiomatises the idea, as with Lin, that I could reify any plurality over a
world into a set. Possible Generics corresponds to the idea that I could always
add a generic for any partial order. One issue then is Subset Comprehension:
Notice that it is restricted to the vertical modality—this will not hold in general
since one can always add subsets along the horizontal modality.

Two theorems are especially important for assessing the import and intu-
itions behind Sca. First we have:

Theorem 50. Sca interprets ZFC− + Count under the potentialist translation
(the potentialist translation, recall, takes a formula φ in L∈ to a corresponding
one in L ♦,〈h〉,〈v〉

∈,≺ by replacing every occurrence of ∀ with �∀ and every occur-
rence of ∃with ♦∃).2

So there’s a sense in which when we have the full modality, thinking of the
stages as given by Sca gets us ZFC− + Count. However we also have:

Theorem 51. [Scambler, 2021] Sca interprets ZFC when we restrict to the ver-
tical modality (i.e. when we do the potentialist translation but replace � and ♦
by [v] and 〈v〉 throughout).

So when we restrict to the vertical modality under Scambler’s stage theory
we get ZFC in the non-modal theory (this is basically just because the vertical
modality obeys Lin). However, we have to ignore the horizontal modality that
would allow us to collapse any given uncountable set (and hence break the Pow-
erset Axiom in the non-modal theory).

The intuition behind Sca is thus the following. We have the verticalmodality
that will allow us, starting with the empty set, to obtain ZFC by successively
reifying classes of worlds. However, we could, at any point, choose to introduce
a generic for a given partial order and family of dense sets. And, by interleaving
Reify! and Generify! we can get ZFC− + Count. Note that, unlike the strong
iterative conception or the constructibilist conception, the stages provided by
Sca need not be well-ordered. Instead, much like Odd! and Even!, we have to
think of applying Generify! and Reify! appropriately. Just as if you spin out
applying one of Odd! or Even! you won’t get all the hereditarily finite sets, so
withGenerify! andReify!. If you head off applyingReify! over and over again,
you’ll just get ZFC. And there are lots of ways of applying Generify! badly too

2( ) Scambler actually shows that Sca interprets ZFC with the Powerset axiom merely re-
moved. However a trivial modification (adding the modal versions of Collection and Separation
instead of Replacement) to his system gets you full ZFC−, so we state this stronger form of the
theorem.
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(e.g. by just adding single Cohen reals over and over again). But, if we apply
Generify! and Reify! just right, we will get ZFC− + Count.

SoSca can be thought of as providing a stage theory for countabilist versions
of the weak iterative conception. This is a pleasing result, but we will raise some
questions for the approach in §9.1.

It just remains to ask what our initial starting worlds are. Given Scambler’s
axioms, we can start with the empty set (we have to shoehorn in the existence
of a world with the natural numbers, but this is par for the course). However
we could equally think of building up over (for example) a model of ZFC with
some classes added on top. Much as with the iterative conception in general,
we have a choice as to what to start with. Our two set forming operations are
reifying classes and adding in forcing generics, and we can start these processes
over lots of different starting domains. Thus we have a plausible stage theory for
the countabilist and advocate of the Forcing Saturation. And it does so in such
away that ZFC− + Count is motivated, whilst still explainingwhyUniversality
fails and Indefinite Extensibility holds (there are always new sets at additional
stages, andneither reifying the classes of a stage nor adding a forcing genericwill
allow you to form a set of all sets). So, as with the strong iterative conception,
we get Paradox Diagnosis here too.

7.4 ( ) Doing without Reify!
It’s worth mentioning here that one does not need the vertical modality in or-
der to get a conception of stage that will motivate ZFC− + Count. Although
not intended for this purpose (his focus is more linguistic) John Steel has pro-
posed a theory of worlds and sets that will do the job without needing a vertical
modality. He proposes (in [Steel, 2014]) a two-sorted theory with variables for
sets x0, x1, ... and variables for universesW0,W1, ...with the following axioms
(here I follow the presentation in [Maddy and Meadows, 2020]):

Definition 52. Steel’s Multiverse Axioms are as follows:

(i) The axiom scheme stating that ifW is a world, and φ is an axiom of ZFC,
then φ holds atW .

(ii) Every world is a transitive proper class.

(iii) IfW is aworld andP is a forcing partial order inW , then there is a universe
W ′ containing a generic forW .

(iv) IfU is a world, andU can be obtained by forcing over some worldW , then
W is also a world.
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(v) If U andW are worlds then there areG andH that are generic over them
such that U [G] = W [H].

A discussion of these axioms, explicitly making the link with countabilism,
is available in [Meadows, 2015]. But note we can also think of these as providing
a stage theory of a sort for countabilist versions of theweak iterative conception.
We start with some proper class model(s) of ZFC, and the set forming operation
is just Generify!.

Formally, we can provide the following axioms:

Definition 53. SteMMe (for Steel-Maddy-Meadows) comprises the following
axioms in L ♦

≺,∈

(i) Classical first-order logic.

(ii) Extensional plural logic.

(iii) The axiom ‘The ordinals do not form a set’.

(iv) Classical S4.2 with the Converse Barcan Formula for every modality.

(v) The necessity of distinctness and stability axioms for ∈ and≺.

(vi) First-order ZFC.

(vii) The potentialist translations of Separation and Collection.

(viii) Possible Set-Generics. The axiom ‘If P is a forcing partial order andD is
a set of dense sets of P, then it’s possible that there is a filter meeting each
dense set that is a member ofD’.

SteMMe suppresses some details of Steel’s proposal (in particular, I’ve ig-
nored moving to ground models of forcing extensions for simplicity). The
thought behind it is that at an initial stagewe’re given some proper classmodel(s)
of ZFC. There is no Reify! operation, the only set forming operation is Gener-
ify!. Still, we can note:

Fact 54. SteMMe interprets ZFC− under the potentialist translation.3

3Here’s a sketch of the proof:

Proof. (Sketch) Since every world satisfies ZFC many of the axioms are trivial. Moreover
SteMMe includes the potentialist translations of Collection and Separation. And clearly
SteMMe proves the potentialist translation of Count by Possible Set-Generics.

I conjecture that including the potentialist translations of Collection and Separation in
SteMMe is redundant. The consistency proof in [Steel, 2014] for Steel’s multiverse axioms also
works for SteMMe. There, Steel finds a model for his multiverse axioms by taking a model of
ZFC, and adding a generic G for the Col(< Ord, ω) extension, and letting worlds be of the
form V [G � α] (i.e. when we restrict G to α). Letting accessibility be given by forcing, it’s easy
to see then that this forms a Kripke model for SteMMe (and, in particular it validates S4.3).
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Note that (in stark contrast to the strong iterative conception) worlds are
proper classes. There is a possible puzzle here—why can’t we collect together
the sets from one of these proper class worlds to form a set? After all, all the
members of some proper classes (e.g. the ordinals) are ‘available’ for collec-
tion at every world. The answer is that the collection forming operation—set
forcing—does not allow them to be collected. So we still have a ParadoxDiag-
nosis (though one that merits some serious philosophical scrutiny). Although
there are worlds containing proper classes, we avoid contradiction by having a
suitably ‘weak’ operation of set formation.

There are many details to be ironed out with these proposals (I will discuss
some in Chapter 9). For now it suffices to note that though they are somewhat
nascent, there are theories like Sca and SteMMe that provide a modal stage the-
ory for the weak iterative conception that validates Forcing Saturation and
Count. We provide some assessment of these approaches in Chapter 9. But we
might ask at this point, which is better out of the strong iterative conception and
the forcing-saturated weak iterative conception?
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Chapter 8

Mathematics under the different
conceptions

This chapter will examine whether one of the strong iterative conception or the
above countabilist versions of the weak iterative conception is best. We’ll do
this by looking at how mathematics is interpreted under each conception of set,
and examine each with respect the theoretical virtues we discussed in Chapter
2. We’ll first provide an explanation of how each handles mathematics, before
contrasting them side-by-side with respect to our theoretical virtues.

8.1 Mathematics and the strong iterative concep-
tion

Let’s first recap the situation with the strong iterative conception. As we noted
in Chapter 2, ZFC and the strong iterative conception does an extremely good
job of interpreting mathematics. A couple of extra things should be mentioned
though at this point.

One core problem for the advocate of the strong iterative conception is to
resolve questions about Theory of Infinity. For, whilst they do have that ZFC
is true, ZFC tells us vanishingly little about the behaviour of infinite sets, and
in particular the values of the continuum function f(ℵα+1) = 2ℵα or whether
large cardinal axioms hold. More has to be done to substantiate new axioms for
set theory, and there’s a rich literature on the topic.1

One kind of mathematics that the advocate of the strong iterative concep-
tion has to interpret are the countabilist stage theories. On her view, these stage
theories can be concerned with the hereditarily countable sets (i.e. sets built up
only from countable sets—formally we say that a set is hereditarily countable if

1See, for example [Maddy, 1988a], [Maddy, 1988b], [Koellner, 2014], and [Incurvati, 2017]
among many others.
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it is a countable set containing only hereditarily countable sets). In this way, the
advocate of the strong iterative conception holds that the theorist advocating
the forcing-saturated weak iterative conception can be interpreted as talking
about structures that miss out a great many large sets (and in particular all the
uncountable ones).

8.2 Mathematics under forcing-saturated weak
iterative conceptions

Things are a little more challenging under the forcing-saturated weak iterative
conceptions. Because we don’t have Powerset, we can’t just piggy-back off the
‘standard’ account of mathematics available under the strong iterative concep-
tion.

We’ve seen two versions of the weak iterative conception (given by SteMMe
and Sca) that validate Forcing Saturation. However, in this context we don’t
have the Powerset Axiom, and hence can’t build many of the usual representa-
tions of structures that we want. So there’s a number of questions we can ask
about the forcing-saturated countabilist interpretation of mathematics:

(1.) How should we understand the study of theories based on ZFC?

(2.) What does ‘mainstream’ mathematics look like under this conception?

(3.) What does our Theory of Infinity look like?

How should we understand the study of theories based on
ZFC?
What becomes of our study of ZFC on this approach? The quick answer is that
you can still have ZFC in a model you just can’t have all subsets of the sets in
those models (since for any set x, there’s a collapsing function from x to ω). If
you want to have ‘uncountable sets’ you just have to leave out the subsets that
witness bijections with the natural numbers.

(A parenthetical remark that should be included at this point: The idea that
sets might be small but ‘appear’ large in some model appears in the work of
Skolem, especially [Skolem, 1922]. Often, however, Skolem’s position is cashed
out via a scepticism and/or referential indeterminacy by asking the question
“How do I know I’m not living in/speaking about a countable model?”. The
present family of views does not have this flavour, and can instead that we can
perfectly well refer to the universe, it is just that the level of Forcing Satura-
tion is so strong that we can only talk about ‘uncountable’ sets by missing out
functions.)
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One can have very natural looking models here. For example, as well as
countable transitive models, it’s possible to have transitive models of ZFC con-
taining all ordinals (so called ‘inner models’) within a model of ZFC− + Count.
Recall that, for example, Sca interprets ZFC under the vertical modality. So any
countabilist theory based on Sca will have inner models of ZFC.

Aside from the stage theory, there are also natural axioms that get us inner
models for ZFC plus large cardinals. Since the axioms are somewhat complex,
I’ll provide them in a -box:

( ) I’ll mention some in passing, but I won’t go into details since the
mathematics starts to get tricky. The interested reader is directed to
[Barton and Friedman, MS] for further references and a fuller discussion of
these examples. One way is to assert the existence of ‘sharps’—these imply
that there are self-embeddings from many inner models and can be used
to get ZFC plus large cardinals in inner models within ZFC− + Count.a
Another (related) kind are axioms of definable determinacy. Many of these
statements (e.g. Projective Determinacy) can be (schematically) rendered in
ZFC− +Count, and also imply that there are innermodels ofZFCplusmany
large cardinals. Finally in [Barton and Friedman, MS] we propose an axiom
(the Ordinal Inner Model Hypothesis), which implies that every set is count-
able but also that ZFC with large cardinals added holds in inner models (for
the cognoscenti—one can get 0]).

aSee Regula Krapf’s PhD thesis [Krapf, 2017] for details of handling sharps in the count-
abilist context.

There is thus a kind of ‘symmetry’ between the strong iterative concep-
tion and the forcing saturated weak iterative conception. Under the forcing-
saturated weak iterative conception, the theories motivated by the strong itera-
tive conception should be understood as holding in transitive models that miss
out subsets (in particular all the collapsing functions). But under the strong iter-
ative conception, the theories motivated by the forcing saturated weak iterative
conception seem to miss out large sets (in particular all the uncountable ones).2

Mathematics for the countabilist
The picture of mainstream mathematics is much different when we have Forc-
ing Saturation. Whilst arithmetic remains unchanged (one can have Vω exactly
as under the strong iterative conception), there are no uncountable set-sized
structures. Rather, all uncountable collections are proper-class-sized. The study

2In [Barton, MS] I’ve argued that this symmetry can be used to claim that uncountabilism is
in fact restrictive.
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of all the real numbers thus becomes the study of a large proper class.3 Since
there are exactly continuum-many continuous functions between the reals, we
can also think of the study of all continuous functions f : R → R as examining
a proper class. But whilst the real numbers and class of all continuous functions
are proper classes, yet highermathematics for larger uncountable cardinals can-
not be interpreted as about the sets without the use of even higher-order logic.
For example the classical study of the space of all functions f : R → R (a key
structure for functional analysis), cannot be interpreted even by a proper class.
One might ask oneself at this point, whether this is bad or just merely different.
We’ll return to this issue below (§8.3).

What does our Theory of Infinity look like?
How is Theory of Infinity handled? There are (at least) two different kinds of
question one could ask:

(1.) How should we understand the Theory of Infinity provided by ZFC?

(2.) What is the Theory of Infinity simpliciter?

The former question is easily handled under the forcing-saturated weak it-
erative conception. Since ZFC is only true relative to a model that misses out
sets, the behaviour of the continuum function (as well as other independent sen-
tences) should be understood via the diverseworld-to-world informationwe get
out of the different models of ZFC. This has affinities with some so called ‘mul-
tiverse’ views in the philosophy of set theory (we’ll discuss these later in Chapter
9, for our purposes now one can simply read ‘multiverse’ as the collection of all
countabilist stages). For example, Joel-David Hamkins writes:

...the continuum hypothesis is a settled question; it is incorrect to
describe the CH as an open problem. The answer to CH consists of
the expansive, detailed knowledge set theorists have gained about
the extent to which it holds and fails in the multiverse, about how
to achieve it or its negation in combination with other diverse set-
theoretic properties. [Hamkins, 2012, p. 429]

Since there is no maximal ZFC structure for the forcing-saturated weak it-
erative conception, we have an answer to the question of CH behaves in ZFC set
theory. Simply put, it is to be found in how CH behaves across structures that
satisfy ZFC. No further answer is needed or possible.

3( ) In fact, since you can think of a real number as coding a countable set, the study of set
theory is in a way just the study of real numbers under ZFC− + Count. This is supported by the
fact that second-order arithmetic and ZFC− + Count are bi-interpretable. See §5.1 of Regula
Krapf’s PhD thesis [Krapf, 2017] for a nice presentation of this result.
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This answer only concerns the impoverished ZFC models for the count-
abilist. So what is their Theory of Infinity simpliciter? This question is an-
swered for sets—every set is either finite or countably infinite. So, in a sense, the
countabilist has a comprehensive (albeit slightly boring) answer for the relative
sizes of sets. However, there are still some interesting questions to be had. Since
the continuum is a proper class, CH is now a claim aboutwhat proper classes exist
coding bijections between classes of sets and the universe. Is every class of reals
either countable or the size of the universe? This is the open question that the
countabilist must address.

( ) One very interesting fact is that in this context CH is equivalent to the
claim that the universe is bijectable with the ordinals. So we have an imme-
diate link with CH and versions of Global Choice. Moreover, CH is equiv-
alent for the countabilist to the ‘limitation of size’ principle that all proper
classes are the same size.a If the advocate of the forcing-saturated weak it-
erative conception could motivate the principle that all proper classes are
the same size, they would then have a complete story about Theory of In-
finity, every set is either (a) finite, (b) infinite, or (c) proper-class-sized, and
the continuum hypothesis (rendered as a claim about proper classes) is true.

aSee here [Holmes et al., 2012], §3.4.

8.3 Contrasting the two conceptions
Is one of the two conceptions better? Both have different ways of responding
to Theory of Infinity and advocate very different responses. Both have some
open questions to answer.

This all raises a question of what will become of the different conceptions,
especiallywhenwe bear inmind the criteria outlined inChapter 2. I won’t come
down one way or the other here—I think there are many questions to be left
open for the future. The main point I won’t to press is the following: Both are
attractive conceptions of set.

I do think it’s pretty clear that the strong iterative conception, with the rich
understanding we have of it and theories motivated on its basis, is well in the
lead in the race. This is to be expected, we’ve only recently starting looking se-
riously at the forcing-saturated weak iterative conception, and so the strong it-
erative conception had an enormous head start (a good 50 years or so). Races
that seemed one-sided can get more competitive over time though. For exam-
ple the logical conception is experiencing something of a resurgence due to its
possible application in formal semantics having previously been regarded as al-
most dead-in-the-water (or at least deeply problematic).4 So it’s worth thinking

4See [Linnebo, 2006], [Linnebo and Shapiro, F], and [Roberts, MSa].
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of how each responds to the desiderata outlined in Chapter 2, contrasting the
two, and considering whether the forcing-saturated weak iterative conception
might catch up. For the sake of ease, we repeat our theoretical virtues here:

Generous Arena. Find representatives for our usual mathematical structures
(e.g. the natural numbers, the real numbers) using our theory of sets.

Shared Standard. Provide a standard of correctness for proof inmathematics.

Limits of Thought. Set theory provides a natural place to examine where the
limits of human thought are, pushing the boundaries of what might be realisti-
cally expected to be known, and exploring where they may finally give out.

Testing Ground for Paradox. Set theory is very paradox prone, both in terms
of the principles that can be formulated within set theory and when combined
with certain philosophical ideas (e.g. absolute generality and mereology). In this
way, set theory provides a testing ground for seeingwhen and how ideas explode.

Metamathematical Corral. Provide a theory in which metamathematical in-
vestigations of relative provability and consistency strengths can be conducted.

Risk Assessment. Provide a degree of confidence in theories commensurate
with their consistency strength.

We also added:

Paradox Diagnosis. Explain why the paradoxical collections aren’t sets and
which conditions determine sets (and which don’t).

Generous arena is handled very differently by the two approaches. But
each has their own answer. The strong iterative conception can essentially
piggy-back off the standard account of Generous Arena given in Chapter 2.
Little more needs to be said here.

The case of the forcing saturated weak iterative conception is more con-
troversial. Here the reals are a proper class (at least in the non-modal theory).
Set theory here is directly akin to second-order arithmetic, and analysis can be
thereby interpreted (so long as we allow talk of proper classes). But third-order
arithmetic is out of reach, standardly interpreted. However, since we have ZFC
plus large cardinals in inner models, proofs using resources from third-order
arithmetic and above can be interpreted in restricted contexts. Whether this con-
stitutes a hobbling ofmathematical practice or just a different approach is a ques-
tion I leave open for philosophical examination.5

This has implications for Shared Standard. Both the strong iterative con-
ception and forcing-saturated weak iterative conception provide their own

5See [Barton and Friedman, MS] for some more detail.
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Generous Arena, and hence their own account of when a proof is legitimate.
Each standard is very different though, if we have Forcing Saturation, third-
order resources are not legitimate for reasoning about the reals. So both have an
account of Shared Standard, but the forcing-saturated weak iterative concep-
tion deviates substantially from the currently accepted norm. This said, under
this countabilist approach, proofs in third-order arithmetic and/or ZFC are not
wrong, they just need to be interpreted in restricted contexts. Again, I leave it open
whether or not this should count against the position or it is simply merely dif-
ferent.

Regarding the Limits ofThought, both are able to handle Gödelian incom-
pleteness in much the same way (claims about relative provability can be con-
strued as claims about first-order arithmetic, and the first-order arithmetic pro-
vided by the two conceptions are not significantly different6). However since
both provide very different pictures of the role of the continuum and indepen-
dence, they provide quite different answers to the question of our knowledge
of the continuum. The strong iterative conception has several questions to an-
swer about large cardinal independence and the the behaviour of the contin-
uum function. The forcing-saturated version of the weak iterative conception,
on the other hand, answers basically all questions about sets. Every set is count-
able, and there are no large (or even uncountable) cardinals, even if there are
large cardinals and uncountable cardinals in inner models. However, the con-
tinuum hypothesis is pushed to a question about class theory, and in particular
is connected with global well-orders for the universe (whether there’s a proper-
class-sized bijection F : V �→ Ord) . As we noted above, if such a countabilist
canmotivate the claim that all proper classes are the same size, then CH is solved
too. But perhaps one can argue that whilst the sets are relatively easily known,
the continuum/proper classes are not, and so we leave this question open. But
there are at least avenues for making philosophical progress on this question.

Moreover, both provide interesting perspectives as a Testing Ground for
Paradox. This is in two ways. First, the incompatibility between Powerset and
Forcing Saturation and the two conceptions we’ve discussed provides for an
interesting kind of ‘paradox’ in its own right (this is part of what was at play in
the Cohen-Scott Paradox). Interestingly, although each denies the full general-
ity of the other’s principles, one can incorporate partial amounts thereof. The
proponent of Powerset can add in limited amounts of Forcing Saturation, for
restricted kinds of partial order and families of dense sets (this yields a class of
axioms known as forcing axioms). Interestingly, the addition of such restricted
Forcing Saturation into the strong iterative conception tends to yield a reso-

6Really, all one gets is that the different theories proposed will yield more/less information
about the natural numbers. But any theory of arithmetic compatible with one conception is
compatible with the other.
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lution of CH in the negative, with 2ℵ0 = ℵ2.7 It is not known how to generalise
these axioms for higher values of the continuum function. For the proponent of
the forcing saturated weak iterative conception of set, we can begin by noting
that the existence of uncountable cardinals are a bit like large cardinals—they
assert the existence of sets closed under various kinds of operation. For exam-
ple, the least uncountable cardinal can be thought of as a set that is closed under
the formation of hereditarily countable cardinals. Over ZFC−, an uncountable
cardinal behaves a bit like an inaccessible cardinal does in ZFC.

( ) For example, letκ be the least inaccessible andω1 be the least uncount-
able cardinal. Both are regular, and both provide a natural model for the
base theory—Vκ provides a model for ZFC (in fact second-order ZFC), and
H(ω1) provides a model for ZFC−.

Moreover, one can postulate the existence of sets with closure under count-
abilism (just not enough to get you an uncountable cardinal). Here’s a slightly
tricky example:

( ) Consider the following schematic reflection principle (for any φ in the
language of set theory):

∀x∃a(x ∈ a ∧ ‘a is transitive’ ∧ φ↔ φa)

i.e. for any set x there is a transitive set a such that x ∈ a and φ is abso-
lute betweena and the universe. ZFC− with this added is known asZFC−

Ref .
This theory is very weak—still far below the consistency strength of ZFC
(and so is consistent if ZFC is). But it adds in sets with closure, in particular
if φ holds in the universe then φ holds restricted to some transitive set a.
And since the universe exhibits various closure properties, this version of
reflection will imply that there are sets with those closure properties too.

So whilst we know that we’ll have to get rid of one of Forcing Saturation
or Powerset, whichever way we go, we can add back in some restricted versions
of the one we rejected.

MetamathematicalCorral is handled immediately. Both conceptionsmo-
tivate theories that can handle talk of set-theoretic models easily, and so there
is no particular difference here. Similarly for Risk Assessment, whilst there
might be small fluctuations dependent upon which theory is eventually picked,
both conceptions can motivate theories with a good deal of strength on an in-
dependently plausible conception. We also might think that there’s no need to
settle on a single conception for Risk Assessment, so long as the conceptions

7For example the Proper Forcing Axiom implies that 2ℵ0 = ℵ2. For a survey of the Proper
Forcing Axiom, see [Moore, 2010].

66



seem cogent and coherent, we can have confidence in the consistency of theories
that are proved consistent on each picture. In particular, if a theory U is proved
consistent by theories motivated under each conception, then more power to
U—its consistency is converged upon by two distinct cogent conceptions of set.

For these reasons I think that both the strong iterative conception and the
forcing-saturated weak iterative conception are each viable conceptions of set.
The strong iterative conception clearly fits better with current orthodoxy, but
that’s not a good reason to discount the forcing-saturated weak iterative con-
ception out of hand. In the end, I think that a careful analysis is needed, either
to choose one of the two or to learn to live with the pluralism they offer. For this
to be done successfully, more development of these two (and other) conceptions
is required, especially on the side of the juvenile weak iterative conception.
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Chapter 9

Conclusions, open questions, and
the future

A short summary of what I’ve argued in this book: I think that set theory pro-
vides an interesting case study and tool for both philosophers and mathemati-
cians. I think that by progress in set theory often involves trading off differ-
ent principles (e.g. Universality and Indefinite Extensibility, Powerset and
Forcing Saturation). I think that this is the situation we find ourselves in now
(at least to some degree).

This said, there’s a lotmore research to be done in this direction. Some areas I
have already identified, but some are new and so I want to close with a summary
and consolidation of what I take to be the most important questions for moving
forward. It will also be helpful to present some objections to what I’ve argued
here, and mention how they could be answered. This will make this ‘conclusion’
longer than usual, and I hope the reader will indulge me in this.

9.1 The weak iterative conception needs work
Earlier (Chapter 7) I remarked that versions of the strong iterative conception
were further ahead in the race as compared to other versions of the weak itera-
tive conception (in particular countabilist ones). Instead, one might argue, they
have not qualified to make the start line.

There are a few reasons one could give to substantiate this claim. The strong
iterative conception, one might contend, is well-developed. We have an account
of what the worlds are (the Vα). By contrast weak iterative conception seems
rather underspecified, and clearly in need of sharpening by a further conception.
But what are the constraints here? What is to count as a legitimate process?
These are all left unanswered by the weak iterative conception and we might
worry that the weak iterative conception is not sufficiently well-formulated to
provide enough constraints.
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Here’s a somewhat silly example of a description of an iterative process.

Definition 55. (Informal) The trivialising conception of set holds that sets are
formed in stages. There are just two stages. At stage 0we have nothing. At stage
1 we perform the following operation “Form all the sets!”. There are no other
stages.

What’s wrongwith this as a version of theweak iterative conception? I think
it’s important to recall (Chapter 3) what we want out of a conception of set. We
want a conception that does the following two things:

(1.) It should motivate a ‘good’ theory of sets, where “good” is to be spelled out
via the theoretical virtues discussed in Chapter 2 (and, indeed, possibly oth-
ers).

(2.) In particular, it should provide a Paradox Diagnosis.

This trivialising conception does not perform well here. In particular it
doesn’t explain why paradoxical collections don’t get into its second stage (since
we have no explanation of why the operation Form all sets! doesn’t form para-
doxical ones) and it is totally uninformative about the theory we should adopt.
So, yes, it is a legitimate version of the weak iterative conception. But it is also
rubbish. We can thus safely kick it to the kerb. By contrast the countabilist ver-
sions of the weak iterative conception, with their attendant axioms and stage
theory, look promising, even if slightly less developed than the strong iterative
conception.

That’s not to say that there aren’t some important questions here that need
to be answered under for these countabilist conceptions. An important issue
is to work out the details of the countabilist stage theory for the weak iterative
conception. One of the major differences between the strong iterative concep-
tion and these is that the stage theory of the former is pretty much fully worked
out, whereas it is less clear for the latter (though there are options as discussed in
Chapter 7). I want to make a few points about moving forward with the project
of isolating appropriate stage theories, and the challenges that need to be over-
come in order to solidify them as genuine contenders, rather than an up-and-
coming prospect.

First, I think that the weak iterative conception is extremely broad. This is
evidenced by the fact that the trivialising weak iterative conception is a legit-
imate version of it, even if terrible as a conception of set. Moreover, there are
very many disparate conceptions that also fall under this banner (e.g. the con-
structibilist conception and the forcing-saturated conception don’t seem to have
a whole lot in common beyond their weak iterativity). So I don’t think we are
going to get a lot of informativeness out of the weak iterative conception alone.
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However, one thing we do get is the idea that there be some sort of descrip-
tion of the universe as unfolding as part of a modal process. And I think the
following is true: Legitimate processes should be well-founded.

Here lies the a challenge for coming up with a more detailed account of the
stages for the weak iterative conception: Many of the possible candidates for
modal stage theories considered in Chapter 7 are not well-founded in the sense
that they don’t have awell-founded accessibility relation. The problem concerns
forcing: It’s pretty rare to have forcing models that are the minimal kind of ex-
tension under inclusion.

( ) For example, imagine I add a single Cohen realG to a stage S to form
the stage S[G]. By doing so, I can immediately see an infinite descending
sequence in the accessibility relation (indeed, I can see a dense ordering of
such possible stages), because whenever I add a Cohen realG, there are in-
finitely many other Cohen reals definable from G, some of which can’t be
used to defineG.

Is this knock-down? I think not. The point is that although accessibility is
non-well-founded, the notion of a process is not.

For a simpler example, suppose I’mgiven a line segment s inEuclidean space.
Now consider the ‘modal stage theory’ of what I could get by extending s in a
single direction. This is an idea of a kind of possible processes that I could do,
for any length m I could extend s by m (denote this by “s_m”). But any time
I do so, I can then see a whole bunch of worlds, indeed a dense sequence, be-
tween s and s_m (e.g. s_m

2
, s_m

3
, ..., s_m

n
, ...) that I could have extended to

instead. But this doesn’t threaten the legitimacy of the procedure, I performed
one action—extending s by m. This has been recognised since at least the time
of Euclid and Aristotle (indeed, there is a more-than-superficial resemblance
to Zeno’s dichotomy paradox). What we have in such a case is that the modal
accessibility relation does not exactly match the kinds of procedure we can do.
What I suggest is that one looks at the well-founded subrelations of the accessi-
bility relation. These will be legitimate possible iterations of ‘processes’ for both
the modal line extension case and a stage theory that incorporates forcing as a
method of extension. For the strong iterative conception, it is just their luck that
their accessibility relation is well-founded and matches their specification of the
processes involved in their version of the weak iterative conception. But this
needn’t be the case. It’s then open to us to say that, whilst I can force to a world
(and thereby see a descending sequence in the accessibility relation), the way I
get to any world has to be doable in a well-founded way. But this suggestion,
though promising, is very far from being worked out in detail, and represents a
substantial open question that needs to be answered for stage theories like Sca
and SteMMe. So we ask:
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Question. Is there an account (possibly formal) of the weak iterative concep-
tion that makes clear the notion of a ‘legitimate process’?

In this regard we can also ask:

Question. What other kinds of process are there for underwriting weak itera-
tive conceptions of set?

9.2 Going back the other way
Supposing that this can be worked out, there is a further hole to patch. In the
case of the strong iterative conception and ZFC, we have the pleasing result that
not only does the modal stage theory motivate ZFC, but ZFC establishes the
correctness of the stage theory. In particular we have:

Theorem 30 (ZF) For every set x there is an ordinal α such that x ∈ Vα.

So we can go both ways, the strong iterative conception (suitably formu-
lated) can motivate ZFC, and ZFC (indeed ZF) can recover a notion of stage and
prove that every set is a member of a stage.

The countabilist versions of the weak iterative conception that we’ve dis-
cussed are not in quite such a rosy state. Whilst we can motivate ZFC− + Count,
it is unknown whether or not there could be a related theory in which we can
prove an analogous theorem. We therefore ask:

Question. Is there a reasonable presentation of a stage theory S that motivates
an extension T of ZFC− + Count, but where one can (in T) recover the stages of
S and prove that every x is a member of some stage?

9.3 Potentialism, actualism, and absolute gener-
ality

Throughout this book, we’ve been discussing modal stage theories. An impor-
tant question in the philosophy of mathematics concerns how we should think
of these modalities. I want to put on the table three possible answers to this
question:

Actualism/Universism. There is a single universe of sets and a definite plu-
rality of all sets.

Potentialism. There is a single universe of sets, but it is modally indefinite.
There is no definite plurality of all sets.
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Multiversism. There is no single universe of all sets, rather many universes.

(Note: It may be that we should relativise these questions to a given con-
ception, with different questions of how the stages are interpreted for different
conceptions.)

These views do not exhaust the logical space (e.g. we could have a universe
that is indefinite, but notmodally so, e.g. [Feferman, 2010], [Scambler, 2020]) but
they are the main ones that are relevant for stage theories. Each view suggests a
different way of philosophically interpreting the relevant modalities. Let’s start
with the modalities involved in the stage theories we’ve considered. The actu-
alist regards the use of modality as a mere heuristic for talking about the stage-
theoretic structure of the universe. The potentialist takes themodality seriously,
and thinks that it is somehow indicative of the fundamental nature of reality.
The multiversist also thinks that the modality is a mere heuristic but in a very
different way from the actualist, for them it is a way of talking about interrela-
tionships between the different universes on offer, and ways of moving between
them.

Each view has it’s own idiosyncrasies and suite of problems to be addressed.
One aspect of each is how we regard the determinacy of truth concerning math-
ematical claims (in particular in the language of set theory). The universist
will likely assert that every sentence of set theory has a definite truth value—
assuming we can refer to their universe without issue, the truth or falsity of
claims should just be understood as the truth or falsity of claims there. Likewise
the multiversist will likely assert that there are set-theoretic claims of indeter-
minate truth value—true in some worlds and false in others. The potentialist
(given mirroring) is likely to fall on the side of determinacy, at least insofar as
‘normal’ mathematical claims go (which should be understood under the poten-
tialist translation).

For the universist, there is the old problem of the nature of proper classes.
For example, Øystein Linnebo writes:

Since a set is completely characterized by its elements, any plu-
rality...seems to provide a complete and precise characterization
of a set... What more could be needed for such a set to exist?1

[Linnebo, 2010, p. 147]

The problem is as follows. Given the stages of any version of the weak iter-
ative conception, the universist holds that there is a determinate totality of all
the sets in the stages. This can be cashed out in plural terms; there are some sets
xx such that that there is no set of all the xx (for ease, let’s just assume that the
xx comprise every pure set). But what is it then that stops us forming these sets

1[Linnebo, 2010] is especially concernedwith the semantics of plural quantification here, and
I’ve suppressed this detail for clarity.
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into a new set? Wehave a definite plurality of them, and so could characterise the
relevant membership relation. One response is to say that contradiction would
ensue. But this only holds if you assume that the xx contain every possible pure
set. So, the universist has to come up with a meaningful explanation of proper
classes that makes it clear why they’re different from sets, and why the seeming
ability to talk about such collections isn’t an issue.

Similarly, many see the generality and flexibility of forcing as evidence that
a given domain of sets can be expanded. Here’s Hamkins on the subject:

A stubborn geometer might insist—like an exotic-travelogue
writer who never actually ventures west of seventh avenue—that
only Euclidean geometry is real and that all the various non-
Euclidean geometries are merely curious simulations within it.
Such a position is self-consistent, although stifling, for it appears to
miss out on the geometrical insights that can arise from the other
modes of reasoning. Similarly, a set theorist with the universe
view can insist on an absolute background universe V, regarding
all forcing extensions and other models as curious complex simu-
lations within it. (I have personally witnessed the necessary con-
tortions for class forcing.) Such a perspective may be entirely self-
consistent, and I am not arguing that the universe view is incoher-
ent, but rather,mypoint is that if one regards all outermodels of the
universe as merely simulated inside it via complex formalisms, one
may miss out on insights that could arise from the simpler philo-
sophical attitude taking them as fully real. [Hamkins, 2012, p. 426]

So, an open question for the universist is how we should interpret the use of
forcing over the universe (including how natural these interpretations are).2

As noted above, the multiversist faces no such difficulties. However they
find themselves in hot water concerning the usual problems of generality rela-
tivism. They assert that there is no absolute universe, but then immediately seem
to make claims about all universes. The immediate question is: “Why can’t we
just understand this domain as the absolute universe?”. Since the literature here
is enormous, I’ll say no more about it, but merely point out that it remains open.3

The potentialist does not face these problems. If one believes that one can
always Reify! and Generify! over any definite plurality, and talk about these
processes modally, one does not face the same difficulties. Any definite plurality
forms a set, and any definite plurality can be forced over.4 Since the universe is

2This is a literature I’ve contributed to in [Barton, 2021] and [Antos et al., 2021].
3For further reading see [Rayo and Uzquiano, 2006], [Florio and Linnebo, 2021] (esp. Chap-

ter 11), and [Studd, 2019].
4There is a question of whether the motivations for these different positions are satisfactory,

see [Roberts, MSb].
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not modally definite, they may contend that there is no definite plurality to be
climbed or forced over. This is the response of both [Linnebo, 2010] (for proper
classes only) and [Scambler, 2021] (for both). Given that their modality is legit-
imate, a response can be made out along these lines. An important question is
thus whether that modality can be given an acceptable gloss, or seems parasitic
on other (unavailable) notions.5 Themultiversist and universist can both explain
themodality by reducing it to other notions (direct quantification over universes
for the former, restricted quantification over the stages for the latter). So there is
a real question of whether the potentialist has just exchanged one suite of prob-
lems for another, and whether one set is especially worse.

A final question regarding absolute generality concerns the similarity be-
tween the reasoning involved inCantor-Russell andCohen-Scott. Some authors
have argued that the similarity between the two suggests that if one is a Reify!
potentialist/multiversist, then one should be aGenerify! potentialist/multiver-
sist too.6 Really substantiating this thesis would require amore detailed analysis
of the similarities between the two pieces of reasoning, and is an open philo-
sophical problem.

Note: This seems like a difficult issue to address, since any such response
will have to distinguish both Cantor-Russell and Cohen-Scott from other kinds
of ‘diagonal’ argument where an ‘indefinite extensibility’ response is not so at-
tractive (e.g. the halting problem, see [Meadows, 2015]). I do not see an easyway
to answer this question, in particular because it is not clear to me if there if there
is a sharp characterisation of the notion of diagonal argument (perhaps instead it
is a more ‘family resemblance’ concept?).7

9.4 Connection to conceptual engineering
One salient point to be noted in what I’ve argued here is that there is a close link
tomuch of the literature on conceptual engineering. This field concerns itself with
the evaluation, design, and implementation of our concepts.8 There are affini-
ties between what we’ve discussed here and this literature. For example, Kevin
Scharp has argued that our naive concept of truth is inconsistent, and should
be replaced with two concepts (ascending truth and descending truth) which vali-
date each direction of the Tarski biconditionals separately, but there is no con-
sistent concept that validates both [Scharp, 2013]. There are clear similarities
here with the way in which Universality and Indefinite Extensibility can be
traded off, and how Forcing Saturation conflicts with Powerset. There is a
natural project here to view these moves in the light of conceptual engineering

5See [Linnebo, 2018], Chs. 3 and 12 for some discussion.
6See [Meadows, 2015], [Scambler, 2021], and [Builes and Wilson, 2022] for discussion.
7I thank Toby Meadows for some discussion of this point. See also [Simmons, 1990].
8See here [Chalmers, 2020] for a survey.
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([Incurvati, 2020] explicitlymakes this connection for IndefiniteExtensibility
and Universality). So we ask:

Question. Should we, and if so how, view the project of trading off features of
concepts/conceptions of set as an exercise in conceptual engineering?

9.5 The story is too neat, and ignores much
In this book, I’ve presented the idea that we can view different attractive con-
ceptions of set as arising out of trading off Forcing Saturation and Powerset.
But I want to emphasise that whilst I do think this is a fundamental tension,
there are many more options out there, some of which are weakly iterative.
what about, for instance, inner model theory and the Ultimate-L programme
[Woodin, 2017]? I won’t go into detail about this here, but the rough idea is to
come up with a version of L that is able to give a good structure theory for V
and still incorporate large cardinals (V = L implies that many large cardinals
don’t exist). What about other proposals for set-theoretic axioms (e.g. Freiling’s
darts)? Isn’t all this a bit narrow?

Yes! It is absolutely too narrow, and space doesn’t permit me to go into
the full details of every possible direction in set theory. My point here was not
to propose Powerset and Forcing Saturation as the two possibilities for set-
theoretic development (though I do think they might be especially attractive to
philosophers). My focus was rather to articulate the idea that in certain con-
texts we can see conceptions as emerging from trading off inconsistent princi-
ples, and thereby highlight some similarities between our own predicament and
that of our intellectual ancestors. In particular, I made simplifying assumptions
there too—there’s far more than the conceptions I concentrated on.

There’s many twists and turns we could have taken. But really the space of
conceptions should be far broader than these pages indicate and are probably
not as conceptually neat as they might be. Regarding breadth: I’ve said little,
for instance, about someof the conceptions of set considered in [Incurvati, 2020]
like the graph conception or those based on non-classical logic such as paracon-
sistent (e.g. [Priest, 2002], [Jockwich et al., 2022]) or constructivist/intuitionist
logics (e.g. [Feferman, 2010], [Bell, 2014], [Scambler, 2020]), or predicativity (e.g.
[Feferman and Hellman, 1995], [Linnebo and Shapiro, F]).

The point is just the following: This book isn’t meant to be providing a clas-
sification for every conception of set. My point is just that by considering (i) the
interrelations between different conceptions, and (ii) how we trade off inconsis-
tent principles, we can come to understand better the space of possibilities for
articulating the mathematically fertile notion of collection.
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9.6 Plato and friends
The next objection comes from the staunch set-theoretic realist/platonist, who
thinks that there’s just a world of sets ‘out there’ where every set-theoretic sen-
tence has a definite truth value. Conceptions of set are great and all, but at the
end of the day the theories they motivate are either true or false about this uni-
verse, and this is the only arbiter of correctness we need. All this talk of theo-
retical virtues and conceptions of set is a mere red herring.

I don’t find this line of argument very persuasive at all. I think the history of
set theory, with all its twists and turns, false starts, and possible choice points,
indicates that this just isn’t a very fruitful way to look at things. To see this,
let’s grant for the sake of argument that there is such a platonistic realm. What
should we think of our talk concerning it? There is a pessimistic probabilistic
argument available here: Do we really think, out of all the possible conceptions
we might have and all the ways we might have gone and continue to go, that we
will really select the ‘right’ one? I think it entirely possible what we’ve discussed
here is probably a very small snapshot of what is quite a large space. These may
well just be a fraction of all the possible conceptions available to humans and
gods. What is the probability (given our lack of perceptual interaction with this
universe) that we happen to pick the right conception? I would say low.9

One could, as a response, say that we do have some sort of perception of the
universe of sets. I don’t have much to say here, beyond the well-worn point that
this seems like mysticism to me. Another option is simply a fatalistic pessimism
about our chances. But I see a better way out—to regard the interesting ques-
tions as ones concerning what we do with our conceptions and the theories they
motivate, and how they interact with our knowledge as a whole. This strikes me
as an area where we can learn and make progress, rather than simply arguing
about whose mystical eye sees the farthest.10

9.7 Pluralism?
I’ve argued that we now find ourselves at a fundamental choice point, do we go
with Forcing Saturation, Powerset, or something else entirely? There is, how-
ever, a different option: We might end up in a situation in which the various
conceptions perform better with respect to certain criteria and/or in different
contexts. It’s possible that we might be led to a strong kind of pluralism, where
claims using the term “set” need to be relativised to a particular kind of concep-
tion in order to be assessed for truth. There’s a special challenge for analysing

9I also make a version of this argument in more detail in [Barton, 2022].
10This way of thinking has some affinities with Maddy’s naturalism [Maddy, 1997], second

philosophy [Maddy, 2007], and thin realism [Maddy, 2011]. I differ from her in that I think that
an appealing underlying conception ismore than amere “useful heuristic’ [Maddy, 2011, p. 136].
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mathematical practice here. Normally (at least within ZFC set theory) the ‘spec-
tre’ of pluralism does not too radically alter the typing of mathematical objects
(e.g. within different theories extending ZFC the reals are always a set). How-
ever here we do have significantly different types—the continuum might be a
proper class under for the countabilist but a tiny accessible set under the strong
iterative conception. To me, it seems philosophically open which route we take,
or even if we need to pick one. So we ask:

Question. What are the prospects for a set-theoretic pluralism arising out of
the different conceptions of set discussed here?

9.8 Not the final word
I hope to have convinced the reader that there’s a host of interesting philosophi-
cal and mathematical questions to be found within contemporary philosophy of
set theory. I want to close with a word on the methodology of progress in this
field. We can only hope to make serious advances on these issues by thought-
ful and meticulous examination of different conceptions. A full study of these
problems will thus require a massive effort from historians, philosophers, and
sociologists of mathematics, as well as philosophically interested mathemati-
cians, and so there’s a real opportunity for collaboration from people working
in many fields. Even then though, it’s not clear how much control we have over
our semantic whims.11 It may be that significant set-theoretic activism is needed
in order to get conceptions accepted as legitimate and under consideration. In
this way, though mathematics has its own norms and methods of reasoning, the
present study suggests a radical anti-exceptionalism about mathematics as con-
tiguous with other human endeavours. The future is open and exciting, with a
good deal of work to be done in understanding the world(s) of infinite sets.

11The idea that we don’t have much control is advocated by [Wilson, 2006] and
[Cappelen, 2018].
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